Comparison of Industrial Business Grouping Using Fuzzy C-Means and Fuzzy Possibilistic C-Means Methods
Abstract
Keywords
Full Text:
Link DownloadReferences
Amaliyah, L.R., Rahim, A., & Septiani, A. (2022). Comparison Of Fuzzy C-Means , Fuzzy Possibilistic C-Means and Possibilistic Fuzzy C-Means Algorithms on The Distribution Of Contraceptive Users In NTB Province. The 2nd International Seminar of Science and Technology.
Amirah, M. M. A., Widodo, A. W., & Dewi, C. (2017). Pengelompokan Lagu Berdasarkan Emosi Menggunakan Algoritma Fuzzy C-Means. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 1(12), 1526–1534.
Andani, S. R. (2013). Fuzzy Mamdani dalam Menentukan Tingkat Keberhasilan Dosen mengajar. Seminar Nasional Informatika 2013, 2013(semnasIF), 57–65.
Apsari, G. R., Pradana, M. S., & Chandra, N. E. (2020). Implementasi Fuzzy C-Means dan Possibilistik C-Means Pada Data Performance Mahasiswa. Unisda Journal of Mathematics and Computer Science (UJMC), 6(2), 39–48. DOI: 10.52166/ujmc.v6i2.2392.
Badan Pusat Statistik. 2023. Industri Besar dan Sedang. Retrieved from http://www.bps.go.id/subject/9/industri-besar-dan-sedang.html.
Correa, C., Valero, C., Barreiro, P., Diago, M. P., & Tardaguila, J. 2011. A comparison of fuzzy clustering algorithms applied to feature extraction on vineyard. In Proceedings of the XIV Conference of the Spanish Association for Artificial Intelligence (pp. 7-11). https://oa.upm.es/9246
David, D., Lauro, M. D., & Herwindiati, D. E. (2020). Sistem Prediksi Customer Loyalty Dengan Metode RFM dan Fuzzy C-Means. Computatio : Journal of Computer Science and Information Systems, 4(1), 33. DOI: 10.24912/computatio.v4i1.7099.
Firdaus, H. S., Nugraha, A. L., Sasmito, B., & Awaluddin, M. (2021). Perbandingan Metode Fuzzy C-Means Dan K-Means Untuk Pemetaan Daerah Rawan Kriminalitas Di Kota Semarang. Elipsoida : Jurnal Geodesi dan Geomatika, 4(01), 58–64. DOI: 10.14710/halal.v%vi%i.9219.
Ganbold, G., & Chasia, & S. (2017). Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification. International Journal of Knowledge Content Development & Technology, 7(1), 57.
Grover, N. (2014). A Study of Various Fuzzy Clustering Algorithms. International Journal of Engineering Research, 3(3), 177–181. DOI: 10.17950/ijer/v3s3/310.
Handoyo, S., Widodo, A., Nugroho, W. H., & Purwanto, I. N. (2019). The implementation of a hybrid fuzzy clustering on the public health facility data. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 3549–3554. DOI: 10.30534/ijatcse/2019/135862019.
Haqiqi, B. N., & Kurniawan, R. 2015. Analisis Perbandingan Metode Fuzzy C-Means dan Subtractive Fuzzy C-Means. Media Statistika, 8(2). DOI: 10.14710/medstat.8.2.59-67.
Herlinda, V., & Darwis, D. (2021). Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. Darwis, Dartono, 2(2), 94–99. DOI: 10.33365/jtsi.v2i2.890.
Mashfuufah, S., & Istiawan, D. (2018). Penerapan Partition Entropy Index, Partition Coefficient Index dan Xie Beni Index untuk Penentuan Jumlah Klaster Optimal pada Algoritma Fuzzy C-Means dalam Pemetaan Tingkat Kesejahteraan Penduduk Jawa Tengah. Proceeding of The URECOL, 51–60.
Merliana, P.N., Ernawati, & Santoso, A. J. (2015). Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means, 978–979.
Nidyashofa, N., & Istiawan, D. (2017). Penerapan Algoritma Fuzzy
C-Means untuk Pengelompokan Kabupaten / Kota di Jawa Tengah Berdasarkan Status Kesejahteraan Tahun 2015. The 6th University Research Colloquium, (September), 23–30.
Ozdemir, O., & Kaya, A. (2019). Comparison of FCM, PCM, FPCM and PFCM Algorithms in Clustering Methods. Afyon Kocatepe University Journal of Sciences and Engineering, 19(1), 92–102. https://10.35414/akufemubid.429540
Putri, G. N. S., Ispriyanti, D., & Widiharih, T. (2022). Implementasi Algoritma Fuzzy C-Means Dan Fuzzy Possibilistics C-Means Untuk Klasterisasi Data Tweets Pada Akun Twitter Tokopedia. Jurnal Gaussian, 11(1), 86–98. DOI: 10.14710/j.gauss.v11i1.33996
Retnoningsih, E., & Pramudita, R. (2020). Mengenal Machine Learning dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python. Bina Insani Ict Journal, 7(2), 156. DOI: 10.51211/biict.v7i2.1422.
Rouza, E., & Fimawahib, L. (2020). Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu. Techno.Com, 19(4), 481–495. DOI: 10.33633/tc.v19i4.4101.
Somvanshi, M., & Chavan, P. (2016). A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine. Integerernational Conference on Computing Communication Control and Automation (ICCUBEA), 1–7. DOI: 10.1109/ICCUBEA.2016.7860040.
Thilagaraj, T., & Sengottaiyan, N. (2019). Implementation of fuzzy C-means and fuzzy possibilistic C-means algorithms to find the low performers using R-tool. International Journal of Scientific and Technology Research, 8(8), 1697–1701.
Widiyanto, M. T. A. C. (2019). Perrbandingan Validitas Fuzzy Clustering pada Fuzzy C - Means Dan Particle Swarms Optimazation (PSO) pada Pengelompokan Kelas. JISKA (Jurnal Informatika Sunan Kalijaga), 4(1), 22. DOI: 10.14421/jiska.2019.41-03
DOI: http://dx.doi.org/10.35671/telematika.v16i2.2548
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .