Comparison of Industrial Business Grouping Using Fuzzy C-Means and Fuzzy Possibilistic C-Means Methods

Mega Lestari, Dwi Kartini, Irwan Budiman, Mohammad Reza Faisal, Muliadi Muliadi

Abstract


The industrial business sector plays a role in the development of the economic sector in developing countries such as Indonesia. In this case, many industrial businesses are growing, but the data has not been processed or analyzed to produce important information that can be processed into knowledge using data mining. One of the data mining techniques used in this research is data grouping, or clustering. This research was conducted to determine the comparison results of the Cluster Validity Index on Fuzzy C-Means and Fuzzy Possibilistic C-Means methods for clustering industrial businesses in Tanah Bumbu Regency. In each process, 5 trials were conducted with the number of clusters, namely 3, 4, 5, 6, and 7, and for the attributes used: Male Labor, Female Labor, Investment Value, Production Value, and BW/BP Value. Furthermore, this study will evaluate the Cluster Validity Index, namely the Partition Entropy Index, Partition Coefficient index, and Modified Partition Coefficient Index. This research provides the best performance results in the Fuzzy C-Means method with the results of the Cluster Validity Index on the Partition Entropy Index of 0.21566, Partition Coefficient Index of 0.88078, and Modified Partition Coefficient Index of 0.82117, and the best number of clusters is 3 with the labels of low competitive industry clusters, medium competitive industry clusters, and highly competitive industry clusters.

Keywords


Industrial Business; Clustering; Fuzzy C-Means; Fuzzy Possibilistic C-Means; Cluster Validity Index

Full Text:

PDF (Indonesian)

References


Amaliyah, L.R., Rahim, A., & Septiani, A. (2022). Comparison Of Fuzzy C-Means , Fuzzy Possibilistic C-Means and Possibilistic Fuzzy C-Means Algorithms on The Distribution Of Contraceptive Users In NTB Province. The 2nd International Seminar of Science and Technology.

Amirah, M. M. A., Widodo, A. W., & Dewi, C. (2017). Pengelompokan Lagu Berdasarkan Emosi Menggunakan Algoritma Fuzzy C-Means. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 1(12), 1526–1534.

Andani, S. R. (2013). Fuzzy Mamdani dalam Menentukan Tingkat Keberhasilan Dosen mengajar. Seminar Nasional Informatika 2013, 2013(semnasIF), 57–65.

Apsari, G. R., Pradana, M. S., & Chandra, N. E. (2020). Implementasi Fuzzy C-Means dan Possibilistik C-Means Pada Data Performance Mahasiswa. Unisda Journal of Mathematics and Computer Science (UJMC), 6(2), 39–48. DOI: 10.52166/ujmc.v6i2.2392.

Badan Pusat Statistik. 2023. Industri Besar dan Sedang. Retrieved from http://www.bps.go.id/subject/9/industri-besar-dan-sedang.html.

Correa, C., Valero, C., Barreiro, P., Diago, M. P., & Tardaguila, J. 2011. A comparison of fuzzy clustering algorithms applied to feature extraction on vineyard. In Proceedings of the XIV Conference of the Spanish Association for Artificial Intelligence (pp. 7-11). https://oa.upm.es/9246

David, D., Lauro, M. D., & Herwindiati, D. E. (2020). Sistem Prediksi Customer Loyalty Dengan Metode RFM dan Fuzzy C-Means. Computatio : Journal of Computer Science and Information Systems, 4(1), 33. DOI: 10.24912/computatio.v4i1.7099.

Firdaus, H. S., Nugraha, A. L., Sasmito, B., & Awaluddin, M. (2021). Perbandingan Metode Fuzzy C-Means Dan K-Means Untuk Pemetaan Daerah Rawan Kriminalitas Di Kota Semarang. Elipsoida : Jurnal Geodesi dan Geomatika, 4(01), 58–64. DOI: 10.14710/halal.v%vi%i.9219.

Ganbold, G., & Chasia, & S. (2017). Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification. International Journal of Knowledge Content Development & Technology, 7(1), 57.

Grover, N. (2014). A Study of Various Fuzzy Clustering Algorithms. International Journal of Engineering Research, 3(3), 177–181. DOI: 10.17950/ijer/v3s3/310.

Handoyo, S., Widodo, A., Nugroho, W. H., & Purwanto, I. N. (2019). The implementation of a hybrid fuzzy clustering on the public health facility data. International Journal of Advanced Trends in Computer Science and Engineering, 8(6), 3549–3554. DOI: 10.30534/ijatcse/2019/135862019.

Haqiqi, B. N., & Kurniawan, R. 2015. Analisis Perbandingan Metode Fuzzy C-Means dan Subtractive Fuzzy C-Means. Media Statistika, 8(2). DOI: 10.14710/medstat.8.2.59-67.

Herlinda, V., & Darwis, D. (2021). Analisis Clustering Untuk Recredesialing Fasilitas Kesehatan Menggunakan Metode Fuzzy C-Means. Darwis, Dartono, 2(2), 94–99. DOI: 10.33365/jtsi.v2i2.890.

Mashfuufah, S., & Istiawan, D. (2018). Penerapan Partition Entropy Index, Partition Coefficient Index dan Xie Beni Index untuk Penentuan Jumlah Klaster Optimal pada Algoritma Fuzzy C-Means dalam Pemetaan Tingkat Kesejahteraan Penduduk Jawa Tengah. Proceeding of The URECOL, 51–60.

Merliana, P.N., Ernawati, & Santoso, A. J. (2015). Analisa Penentuan Jumlah Cluster Terbaik pada Metode K-Means, 978–979.

Nidyashofa, N., & Istiawan, D. (2017). Penerapan Algoritma Fuzzy

C-Means untuk Pengelompokan Kabupaten / Kota di Jawa Tengah Berdasarkan Status Kesejahteraan Tahun 2015. The 6th University Research Colloquium, (September), 23–30.

Ozdemir, O., & Kaya, A. (2019). Comparison of FCM, PCM, FPCM and PFCM Algorithms in Clustering Methods. Afyon Kocatepe University Journal of Sciences and Engineering, 19(1), 92–102. https://10.35414/akufemubid.429540

Putri, G. N. S., Ispriyanti, D., & Widiharih, T. (2022). Implementasi Algoritma Fuzzy C-Means Dan Fuzzy Possibilistics C-Means Untuk Klasterisasi Data Tweets Pada Akun Twitter Tokopedia. Jurnal Gaussian, 11(1), 86–98. DOI: 10.14710/j.gauss.v11i1.33996

Retnoningsih, E., & Pramudita, R. (2020). Mengenal Machine Learning dengan Teknik Supervised dan Unsupervised Learning Menggunakan Python. Bina Insani Ict Journal, 7(2), 156. DOI: 10.51211/biict.v7i2.1422.

Rouza, E., & Fimawahib, L. (2020). Implementasi Fuzzy C-Means Clustering dalam Pengelompokan UKM Di Kabupaten Rokan Hulu. Techno.Com, 19(4), 481–495. DOI: 10.33633/tc.v19i4.4101.

Somvanshi, M., & Chavan, P. (2016). A Review of Machine Learning Techniques Using Decision Tree and Support Vector Machine. Integerernational Conference on Computing Communication Control and Automation (ICCUBEA), 1–7. DOI: 10.1109/ICCUBEA.2016.7860040.

Thilagaraj, T., & Sengottaiyan, N. (2019). Implementation of fuzzy C-means and fuzzy possibilistic C-means algorithms to find the low performers using R-tool. International Journal of Scientific and Technology Research, 8(8), 1697–1701.

Widiyanto, M. T. A. C. (2019). Perrbandingan Validitas Fuzzy Clustering pada Fuzzy C - Means Dan Particle Swarms Optimazation (PSO) pada Pengelompokan Kelas. JISKA (Jurnal Informatika Sunan Kalijaga), 4(1), 22. DOI: 10.14421/jiska.2019.41-03




DOI: http://dx.doi.org/10.35671/telematika.v16i2.2548

Refbacks

  • There are currently no refbacks.




Indexed by:


Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .