Optimization of the XG-Boost Algorithm for Predicting Stroke Patient Care Outcomes

Puji Lestari, Imam Tahyudin, Ades Tikaningsih, Ade Nurhopipah

Abstract


Stroke is a critical health issue in Indonesia, contributing to high mortality rates. At Banyumas District Hospital, stroke is the fourth most common condition, presenting significant challenges in both clinical care and financial management. The purpose of this study is to enhance the quality of services and optimize treatment costs for stroke patients by developing a predictive model using the XGBoost algorithm. This study employs the XGBoost algorithm to develop predictive models, which are then implemented within a web-based machine learning application using the Paython Flask framework. The models predict patient mortality and hospitalization duration. The results indicate that the XGBoost algorithm predicts patient mortality with 86% accuracy and hospitalization duration with 82% accuracy. The developed application significantly enhances care quality and resource management at Banyumas District Hospital by providing accurate predictions to support healthcare decision-making. The use of this application can significantly improve the management of stroke patient care at Banyumas District Hospital, thus maximizing service quality and optimizing treatment costs. By integrating accurate predictive modeling into healthcare decision-making processes, the application facilitates more effective allocation of resources and timely medical interventions, ultimately contributing to better patient outcomes.

Keywords


XGBoost; Machine Learning; Web-Based Application; Extreme Programming (XP); Python Flask

Full Text:

Link Download

References


Abujaber, A. A., Albalkhi, I., Imam, Y., Nashwan, A., Akhtar, N., & Alkhawaldeh, I. M. (2024). Machine learning-based prognostication of mortality in stroke patients. Heliyon, 10(7), e28869. https://doi.org/10.1016/j.heliyon.2024.e28869

Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., & Porres, I. (2019). Model-based testing using UML activity diagrams: A systematic mapping study. Computer Science Review, 33(July), 98–112. https://doi.org/10.1016/j.cosrev.2019.07.001

Amruthamathi, A., & Devi, D. (2023). Diagnosis of liver failure using flask web framework. 050016.

Barsasella, D., Bah, K., Mishra, P., Uddin, M., Dhar, E., Suryani, D. L., Setiadi, D., Masturoh, I., Sugiarti, I., Jonnagaddala, J., & Syed-Abdul, S. (2022). A Machine Learning Model to Predict Length of Stay and Mortality among Diabetes and Hypertension Inpatients. Medicina (Kaunas, Lithuania), 58(11). https://doi.org/10.3390/medicina58111568

Bhaskar, P., Kumar Burramsetty, V. S. R., Pinnaka, B., Teja Kalapala, B., & Kumar Tanguturi, V. S. S. (2024). Advancing Healthcare Predictions: Harnessing Machine Learning for Accurate Health Index Prognosis. International Journal of Innovative Science and Research Technology (IJISRT), 9(4), 934–941. https://doi.org/10.38124/ijisrt/ijisrt24apr709

Huey Fern Tay. (2021). When is it ok to impute missing values with a zero? Towardsdatascience.Com. https://towardsdatascience.com/when-is-it-ok-to-impute-missing-values-with-a-zero-6d94b3bf1352

Indarto, Utami, E., & Suwanto, R. (2020). Prediksi Risiko Kematian Pasien Stroke Pendarahan Dengan Menggunakan Teknik Klasifikasi Data Mining. Jurnal Informasi Interaktif, 5(2), 86–91.

Javed, M., Ahmad, B., Hussain, S., & Ahmad, S. (2010). Mapping The Best Practices of XP and Project Management: Well defined approach for Project Manager. Journal of Computing, 2(3), 2151–9617.

Liu, J., Wu, J., Liu, S., Li, M., Hu, K., & Li, K. (2021). Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. PLoS ONE, 16(2 February), 1–11. https://doi.org/10.1371/journal.pone.0246306

Mahmoud Hewedi, K., El Din Tharwat Mohamed, M., & Awad Yousef Abo Sleem, M. (2019). Pre Hospital and in Hospital Delays After the Onset of Acute Ischemic Stroke in a Sample of Egyptian Patients. Al-Azhar Medical Journal, 48(4), 311–322. https://doi.org/10.21608/amj.2019.64940

Marzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 19(6), 1106–1114. https://doi.org/10.1175/825.1

Maskuri, M. N., Harliana, Sukerti, K., & Bhakti, R. M. H. (2022). Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 4(1), 130–140.

Medar, R., Rajpurohit, V. S., & Rashmi, B. (2017). Impact of Training and Testing Data Splits on Accuracy of Time Series Forecasting in Machine Learning. 2017 International Conference on Computing, Communication, Control and Automation, ICCUBEA 2017, 1–6. https://doi.org/10.1109/ICCUBEA.2017.8463779

Muslim Karo Karo, I. (2020). Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan. Journal of Software Engineering, Information and Communication Technology, 1(1), 11–18.

Nidhra, S. (2012). Black Box and White Box Testing Techniques - A Literature Review. International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204

Paleczek, A., Grochala, D., & Rydosz, A. (2021). Artificial breath classification using xgboost algorithm for diabetes detection. Sensors, 21(12). https://doi.org/10.3390/s21124187

Pawar, S., Shukla, P., Bagal, P., Dawkhar, A., & Jadhav, R. (2022). Development of Web Application for Breast Cancer Detection using Machine Learning Classifier. 13th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2022, 8(December), 552–556.

Putri, A. K., & Sonia, D. (2021). Efektivitas Pengembalian Berkas Rekam Medis Rawat Inap Dalam Menunjang Kualitas Laporan di Rumah Sakit Bhayangkara Sartika Asih Bandung. 2(3).

Rojas, A. P., & Bellinger, E. P. (n.d.). Engineering a Web-based Interface to Predict the Unknown Physical Properties of Solar-like Stars. 2–5.

Saha, R., Malviya, L., Jadhav, A., & Dangi, R. (2023). Early stage HIV diagnosis using optimized ensemble learning technique. Biomedical Signal Processing and Control, 89(July 2023), 105787. https://doi.org/10.1016/j.bspc.2023.105787

Saputra, J. A., & Susetyo, Y. A. (2022). Development of Price Distribution Module on Merchandise Application Using Flask Framework At Pt Xyz. Jurnal Teknik Informatika (Jutif), 3(5), 1293–1300. https://doi.org/10.20884/1.jutif.2022.3.5.351

Setiawan, P. A. (2020). Diagnosis Dan Tatalaksana Stroke Hemoragik. Jurnal Medika Utama, 02(01), 402–406.

Siau, K. (2010). An analysis of unified modeling language (UML) graphical constructs based on BWW ontology. Journal of Database Management, 21(1).

Sittig, D. F., Wright, A., Coiera, E., Magrabi, F., Ratwani, R., Bates, D. W., & Singh, H. (2020). Current challenges in health information technology–related patient safety. Health Informatics Journal, 26(1), 181–189. https://doi.org/10.1177/1460458218814893

Sudarsono, B. G. (2020). Using an Extreme Programming Method for Hotel Reservation System Development. International Journal of Emerging Trends in Engineering Research, 8(6), 2223--2228. https://doi.org/10.30534/ijeter/2020/01862020

Suryantara, I. G. N., & Andry, J. F. (2018). Development of Medical Record With Extreme Programming SDLC. International Journal of New Media Technology, 5(1), 47–53. https://doi.org/10.31937/ijnmt.v5i1.706

Tarwidi, D., Pudjaprasetya, S. R., Adytia, D., & Apri, M. (2023). An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX, 10(December 2022), 102119. https://doi.org/10.1016/j.mex.2023.102119

Uddin, K. M. M., Nahid, M. N. H., Ullah, M. M. H., Mazumder, B., Khan, M. S. I., & Dey, S. K. (2023). Machine Learning-Based Chronic Kidney Cancer Prediction Application: A Predictive Analytics Approach. Biomedical Materials & Devices, 0123456789. https://doi.org/10.1007/s44174-023-00133-5

Vani, G., Karunakar, K., Reddy, C. V., Reddy, S., & Reddy, V. (2024). Health Monitoring and Disease Detection Using Machine Learning. International Journal for Innovative Engineering and Management Research, 09(June).

Yacouby, R., & Axman, D. (2020). Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9




DOI: http://dx.doi.org/10.35671/telematika.v18i1.2817

Refbacks

  • There are currently no refbacks.


 



Indexed by:

 

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .