Optimization of the XG-Boost Algorithm for Predicting Stroke Patient Care Outcomes
Abstract
Keywords
Full Text:
Link DownloadReferences
Abujaber, A. A., Albalkhi, I., Imam, Y., Nashwan, A., Akhtar, N., & Alkhawaldeh, I. M. (2024). Machine learning-based prognostication of mortality in stroke patients. Heliyon, 10(7), e28869. https://doi.org/10.1016/j.heliyon.2024.e28869
Ahmad, T., Iqbal, J., Ashraf, A., Truscan, D., & Porres, I. (2019). Model-based testing using UML activity diagrams: A systematic mapping study. Computer Science Review, 33(July), 98–112. https://doi.org/10.1016/j.cosrev.2019.07.001
Amruthamathi, A., & Devi, D. (2023). Diagnosis of liver failure using flask web framework. 050016.
Barsasella, D., Bah, K., Mishra, P., Uddin, M., Dhar, E., Suryani, D. L., Setiadi, D., Masturoh, I., Sugiarti, I., Jonnagaddala, J., & Syed-Abdul, S. (2022). A Machine Learning Model to Predict Length of Stay and Mortality among Diabetes and Hypertension Inpatients. Medicina (Kaunas, Lithuania), 58(11). https://doi.org/10.3390/medicina58111568
Bhaskar, P., Kumar Burramsetty, V. S. R., Pinnaka, B., Teja Kalapala, B., & Kumar Tanguturi, V. S. S. (2024). Advancing Healthcare Predictions: Harnessing Machine Learning for Accurate Health Index Prognosis. International Journal of Innovative Science and Research Technology (IJISRT), 9(4), 934–941. https://doi.org/10.38124/ijisrt/ijisrt24apr709
Huey Fern Tay. (2021). When is it ok to impute missing values with a zero? Towardsdatascience.Com. https://towardsdatascience.com/when-is-it-ok-to-impute-missing-values-with-a-zero-6d94b3bf1352
Indarto, Utami, E., & Suwanto, R. (2020). Prediksi Risiko Kematian Pasien Stroke Pendarahan Dengan Menggunakan Teknik Klasifikasi Data Mining. Jurnal Informasi Interaktif, 5(2), 86–91.
Javed, M., Ahmad, B., Hussain, S., & Ahmad, S. (2010). Mapping The Best Practices of XP and Project Management: Well defined approach for Project Manager. Journal of Computing, 2(3), 2151–9617.
Liu, J., Wu, J., Liu, S., Li, M., Hu, K., & Li, K. (2021). Predicting mortality of patients with acute kidney injury in the ICU using XGBoost model. PLoS ONE, 16(2 February), 1–11. https://doi.org/10.1371/journal.pone.0246306
Mahmoud Hewedi, K., El Din Tharwat Mohamed, M., & Awad Yousef Abo Sleem, M. (2019). Pre Hospital and in Hospital Delays After the Onset of Acute Ischemic Stroke in a Sample of Egyptian Patients. Al-Azhar Medical Journal, 48(4), 311–322. https://doi.org/10.21608/amj.2019.64940
Marzban, C. (2004). The ROC curve and the area under it as performance measures. Weather and Forecasting, 19(6), 1106–1114. https://doi.org/10.1175/825.1
Maskuri, M. N., Harliana, Sukerti, K., & Bhakti, R. M. H. (2022). Penerapan Algoritma K-Nearest Neighbor (KNN) untuk Memprediksi Penyakit Stroke. Jurnal Ilmiah Intech : Information Technology Journal of UMUS, 4(1), 130–140.
Medar, R., Rajpurohit, V. S., & Rashmi, B. (2017). Impact of Training and Testing Data Splits on Accuracy of Time Series Forecasting in Machine Learning. 2017 International Conference on Computing, Communication, Control and Automation, ICCUBEA 2017, 1–6. https://doi.org/10.1109/ICCUBEA.2017.8463779
Muslim Karo Karo, I. (2020). Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan. Journal of Software Engineering, Information and Communication Technology, 1(1), 11–18.
Nidhra, S. (2012). Black Box and White Box Testing Techniques - A Literature Review. International Journal of Embedded Systems and Applications, 2(2), 29–50. https://doi.org/10.5121/ijesa.2012.2204
Paleczek, A., Grochala, D., & Rydosz, A. (2021). Artificial breath classification using xgboost algorithm for diabetes detection. Sensors, 21(12). https://doi.org/10.3390/s21124187
Pawar, S., Shukla, P., Bagal, P., Dawkhar, A., & Jadhav, R. (2022). Development of Web Application for Breast Cancer Detection using Machine Learning Classifier. 13th International Conference on Advances in Computing, Control, and Telecommunication Technologies, ACT 2022, 8(December), 552–556.
Putri, A. K., & Sonia, D. (2021). Efektivitas Pengembalian Berkas Rekam Medis Rawat Inap Dalam Menunjang Kualitas Laporan di Rumah Sakit Bhayangkara Sartika Asih Bandung. 2(3).
Rojas, A. P., & Bellinger, E. P. (n.d.). Engineering a Web-based Interface to Predict the Unknown Physical Properties of Solar-like Stars. 2–5.
Saha, R., Malviya, L., Jadhav, A., & Dangi, R. (2023). Early stage HIV diagnosis using optimized ensemble learning technique. Biomedical Signal Processing and Control, 89(July 2023), 105787. https://doi.org/10.1016/j.bspc.2023.105787
Saputra, J. A., & Susetyo, Y. A. (2022). Development of Price Distribution Module on Merchandise Application Using Flask Framework At Pt Xyz. Jurnal Teknik Informatika (Jutif), 3(5), 1293–1300. https://doi.org/10.20884/1.jutif.2022.3.5.351
Setiawan, P. A. (2020). Diagnosis Dan Tatalaksana Stroke Hemoragik. Jurnal Medika Utama, 02(01), 402–406.
Siau, K. (2010). An analysis of unified modeling language (UML) graphical constructs based on BWW ontology. Journal of Database Management, 21(1).
Sittig, D. F., Wright, A., Coiera, E., Magrabi, F., Ratwani, R., Bates, D. W., & Singh, H. (2020). Current challenges in health information technology–related patient safety. Health Informatics Journal, 26(1), 181–189. https://doi.org/10.1177/1460458218814893
Sudarsono, B. G. (2020). Using an Extreme Programming Method for Hotel Reservation System Development. International Journal of Emerging Trends in Engineering Research, 8(6), 2223--2228. https://doi.org/10.30534/ijeter/2020/01862020
Suryantara, I. G. N., & Andry, J. F. (2018). Development of Medical Record With Extreme Programming SDLC. International Journal of New Media Technology, 5(1), 47–53. https://doi.org/10.31937/ijnmt.v5i1.706
Tarwidi, D., Pudjaprasetya, S. R., Adytia, D., & Apri, M. (2023). An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX, 10(December 2022), 102119. https://doi.org/10.1016/j.mex.2023.102119
Uddin, K. M. M., Nahid, M. N. H., Ullah, M. M. H., Mazumder, B., Khan, M. S. I., & Dey, S. K. (2023). Machine Learning-Based Chronic Kidney Cancer Prediction Application: A Predictive Analytics Approach. Biomedical Materials & Devices, 0123456789. https://doi.org/10.1007/s44174-023-00133-5
Vani, G., Karunakar, K., Reddy, C. V., Reddy, S., & Reddy, V. (2024). Health Monitoring and Disease Detection Using Machine Learning. International Journal for Innovative Engineering and Management Research, 09(June).
Yacouby, R., & Axman, D. (2020). Probabilistic Extension of Precision, Recall, and F1 Score for More Thorough Evaluation of Classification Models. 79–91. https://doi.org/10.18653/v1/2020.eval4nlp-1.9
DOI: http://dx.doi.org/10.35671/telematika.v18i1.2817
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .