Convolutional Neural Networks for Classification of Lung Cancer Based on Histopathological Images

Sarifah Agustiani, Denny Pribadi, Agus Junaidi, Siti Khotimatul Wildah, Ali Mustopa, Yoseph Tajul Arifin


Lung cancer is one of the deadliest types of cancer characterized by the uncontrolled growth of cancer cells in the lung tissue due to the accumulation of carcinogens. Lung cancer ranks second in the most cases with 2.206 million new cases and ranks first in deaths. This lung cancer often does not cause symptoms in the early stages, because it only appears after the tumor is large enough or the cancer has spread to surrounding tissues or organs, so it is necessary to have early detests to prevent severity and determine follow-up treatment. This study aims to classify lung cancers using digital pathology images with data of 15000 images obtained from the LC25000 dataset containing 5,000 images for each class. The method used in this classification process uses convolutional neural networks (CNN) which is one of the implementations of Deep Learning used for digital image processing. Using this method, the doctor can diagnose and find out the type of lung cancer quickly without spending much time. Thus, the faster the prediction results received by the doctor / health expert, the faster the next action or handler will be, this study produces a fairly accurate accuracy value even though it uses a shallow CNN architecture because it only consists of 5 layers with 3 convolution layers and 2 fully connected layers, with the resulting accuracy value of 98.53%.


CNN; Lung Cancer; Histopathology

Full Text:

PDF (Indonesian)


Abdulah, M. B. (2022). Faktor-Faktor Dominan Yang Mempengaruhi Kepatuhan Pasien Kanker Dalam Pengobatan Kemoterapi: Studi Literatur. Tunas-Tunas Riset Kesehatan, 12(1), 170–177.

Alamsyah, D., & Pratama, D. (2020). Implementasi Convolutional Neural Networks (Cnn) Untuk Klasifikasi Ekspresi Citra Wajah Pada Fer-2013. 4(2), 350–355.

Amalita, N., & Dewi, M. P. (2021). Faktor-Faktor Risiko Yang Mempengaruhi Kanker Paru-Paru Dengan Menggunakan Analisis Regresi Logistik. Unpjomath, 4(1), 38–42.

Borkowski, A. A., Bui, M. M., Brannon Thomas, L., Wilson, C. P., Deland, L. A., & Mastorides, S. M. (2019). Lung And Colon Cancer Histopathological Image Dataset (Lc25000). Arxiv, 1–2.

Buana, I., & Harahap, D. A. (2022). Asbestos, Radon Dan Polusi Udara Sebagai Faktor Resiko Kanker Paru Pada Perempuan Bukan Perokok. Jurnal Kedokteran Dan Kesehatan Malikussaleh, 8(1).

Candra, P. N., & Prapanca, A. (2020). Klasifikasi Gambar Asli Dan Manipulasi Menggunakan Error Level Analysis ( Ela ) Sebagai Proses Komputasi Metode Convolutional Neural Network ( Cnn ). Journal Of Informatics And Computer Science, 02, 9–18.

Da Nóbrega, R. V. M., Rebouças Filho, P. P., Rodrigues, M. B., Da Silva, S. P. P., Dourado Júnior, C. M. J. M., & De Albuquerque, V. H. C. (2020). Lung Nodule Malignancy Classification In Chest Computed Tomography Images Using Transfer Learning And Convolutional Neural Networks. Neural Computing And Applications, 32(15), 11065–11082. Https://Doi.Org/10.1007/S00521-018-3895-1

Felix, F., Wijaya, J., Sutra, S. P., Kosasih, P. W., & Sirait, P. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. Jurnal Sifo Mikroskil, 21(1), 1–10.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, B. F. . (2020). International Agency For Research On Cancer 2020. Global Cancer Observatory: Cancer Today., 419, 1–2. Https://Gco.Iarc.Fr/Today/Data/Factsheets/Populations/900-World-Fact-Sheets.Pdf

Hatuwal, B. K., & Thapa, H. C. (2020). Lung Cancer Detection Using Convolutional Neural Network On Histopathological Images. International Journal Of Computer Trends & Technology, 68(10), 21–24. Https://Doi.Org/10.14445/22312803/Ijctt-V68i10p104

Maggiori, E., Tarabalka, Y., Charpiat, G., & Alliez. (2016). Convolutional Neural Networks For Large-Trans Scale Remote-Sensing Image Classification.

Mangal, S., Chaurasia, A., & Khajanchi, A. (2020). Convolution Neural Networks For Diagnosing Colon And Lung Cancer Histopathological Images. Http://Arxiv.Org/Abs/2009.03878

Nugroho, P. A., Fenriana, I., Arijanto, R., & Kom, M. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia, 2(1).

Pangribowo, S. (2019). Beban Kanker Di Indonesia. Pusat Data Dan Informasi Kemeterian Kesehatan Ri, 1–16.

Pratiwi, H. A., Cahyanti, M., & Lamsani, M. (2021). Implementasi Deep Learning Flower Scanner Menggunakan Metode Convolutional Neural Network. Sebatik, 25(1), 124–130. Https://Doi.Org/10.46984/Sebatik.V25i1.1297

Putra, A. K., & Bunyamin, H. (2020). Pengenalan Simbol Matematika Dengan Metode Convolutional Neural Network ( Cnn ). 2(November), 426–433.

Sannasi Chakravarthy, S. R., & Rajaguru, H. (2019). Lung Cancer Detection Using Probabilistic Neural Network With Modified Crow-Search Algorithm. Asian Pacific Journal Of Cancer Prevention, 20(7), 2159–2166. Https://Doi.Org/10.31557/Apjcp.2019.20.7.2159

Santoso, A., & Ariyanto, G. (2018). Implementasi Deep Learning Berbasis Keras Untuk Pengenalan Wajah. Emitor: Jurnal Teknik Elektro, 18(01), 15–21. Https://Doi.Org/10.23917/Emitor.V18i01.6235

Saric, M., Russo, M., Stella, M., & Sikora, M. (2019). Cnn-Based Method For Lung Cancer Detection In Whole Slide Histopathology Images. 2019 4th International Conference On Smart And Sustainable Technologies, Splitech 2019, 14–17. Https://Doi.Org/10.23919/Splitech.2019.8783041

Sasikala, S., Bharathi, M., & Sowmiya, B. R. (2018). Lung Cancer Detection And Classification Using Deep Cnn. International Journal Of Innovative Technology And Exploring Engineering, 8(2s), 259–262.

Septiani, I. W., Fauzan, A. C., & Huda, M. M. (2022). Implementasi Algoritma K-Medoids Dengan Evaluasi Davies-Bouldin- Index Untuk Klasterisasi Harapan Hidup Pasca Operasi Pada Pasien Penderita Kanker Paru-Paru. 3, 556–566. Https://Doi.Org/10.30865/Json.V3i4.4055

Sugara, B., & Subekti, A. (2019). Penerapan Support Vector Machine (Svm) Pada Small Dataset Untuk Deteksi Dini Gangguan Autisme. Jurnal Pilar Nusa Mandiri, 15(2), 177–182. Https://Doi.Org/10.33480/Pilar.V15i2.649

Telaumbanua, F. D., Hulu, P., Nadeak, T. Z., Lumbantong, R. R., & Dharma, A. (2019). Penggunaan Machine Learning. Jurnal Teknologi Dan Ilmu Komputer, 3(1), 57–64.



  • There are currently no refbacks.

Indexed by:

ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .