An Optimize Weights Naïve Bayes Model for Early Detection of Diabetes
Abstract
Keywords
Full Text:
Link DownloadReferences
Anwar, F., Qurat-Ul-Ain, Ejaz, M. Y., & Mosavi, A. (2020). A comparative analysis on diagnosis of diabetes mellitus using different approaches – A survey. Informatics in Medicine Unlocked, 21, 100482. doi: https://doi.org/10.1016/j.imu.2020.100482
Candra Permana, B. A., & Dewi Patwari, I. K. (2021). Komparasi Metode Klasifikasi Data Mining Decision Tree dan Naïve Bayes Untuk Prediksi Penyakit Diabetes. Infotek : Jurnal Informatika Dan Teknologi, 4(1), 63–69. doi: https://doi.org/10.29408/jit.v4i1.2994
Friedman, N., Geiger, D., Goldszmidt, M., Provan, G., Langley, P., & Smyth, P. (1997). Bayesian Network Classifiers *. Machine Learning, 29, 131–163. https://doi.org/10.1023/A:1007465528199
Islam, M. M. F., Ferdousi, R., Rahman, S., & Bushra, H. Y. (2020). Likelihood Prediction of Diabetes at Early Stage Using Data Mining Techniques. Advances in Intelligent Systems and Computing, 992, 113–125. doi: https://doi.org/10.1007/978-981-13-8798-2_12
Kotu, V., & Deshpande, B. (2019). Model Evaluation. In Data Science (pp. 263–279). Elsevier. doi: https://doi.org/10.1016/b978-0-12-814761-0.00008-3
M M Faniqul Islam; Rahatara Ferdousi. (2020). UCI Machine Learning Repository: Early stage diabetes risk prediction dataset. Data Set. https://archive.ics.uci.edu/ml/datasets/Early+stage+diabetes+risk+prediction+dataset.
Melanie, M. (1996). An introduction to genetic algorithms. Cambridge, Massachusetts London, England. doi: https://doi.org/10.1016/S0898-1221
Mok, C. H., Kwok, H. H. Y., Ng, C. S., Leung, G. M., & Quan, J. (2021).
Health State Utility Values for Type 2 Diabetes and Related Complications in East and Southeast Asia: A Systematic Review and Meta-Analysis. Value in Health. doi: https://doi.org/10.1016/j.jval.2020.12.019
Mujumdar, A., & Vaidehi, V. (2019). Diabetes Prediction using Machine Learning Algorithms. Procedia Computer Science, 165, 292–299. doi: https://doi.org/10.1016/j.procs.2020.01.047
Nurdiana, N., & Algifari, A. (2020). Studi Komparasi Algoritma Id3 Dan Algoritma Naive Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. INFOTECH Journal, 6(2), 18–23. https://ejournal.unma.ac.id/index.php/infotech/article/view/816
Ridwan, A. (2020). Penerapan Algoritma Naïve Bayes Untuk Klasifikasi Penyakit Diabetes Mellitus. Jurnal SISKOM-KB (Sistem Komputer Dan Kecerdasan Buatan), 4(1), 15–21. doi: https://doi.org/10.47970/siskom-kb.v4i1.169
Shivakumar, B. L., & Alby, S. (2014). A survey on data-mining technologies for prediction and diagnosis of diabetes. Proceedings - 2014 International Conference on Intelligent Computing Applications, ICICA 2014, 167–173. doi: https://doi.org/10.1109/ICICA.2014.44
Shrivastava, R. K., Ramakrishna, S., & Hota, C. (2019). Game theory based modified naïve-bayes algorithm to detect DoS attacks using Honeypot. 2019 IEEE 16th India Council International Conference, INDICON 2019 - Symposium Proceedings, 1–4. doi: https://doi.org/10.1109/INDICON47234.2019.9030355
Somantri, O., & Apriliani, D. (2019). Opinion mining on culinary food customer satisfaction using naïve bayes based-on hybrid feature selection. Indonesian Journal of Electrical Engineering and Computer Science, 15(1), 468–475. doi: https://doi.org/10.11591/ijeecs.v15.i1
Tripathi, A., Yadav, S., & Rajan, R. (2019). Naive Bayes Classification Model for the Student Performance Prediction. 2019 2nd International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2019, 1548–1553. doi: https://doi.org/10.1109/ICICICT46008.2019.8993237
Tripathi, G., & Kumar, R. (2020). Early Prediction of Diabetes Mellitus Using Machine Learning. ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions), 1009–1014. doi: https://doi.org/10.1109/ICRITO48877.2020.9197832
Vigneswari, D., Kumar, N. K., Ganesh Raj, V., Gugan, A., & Vikash, S. R. (2019). Machine Learning Tree Classifiers in Predicting Diabetes Mellitus. 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019, 84–87. doi: https://doi.org/10.1109/ICACCS.2019.8728388
Wang, Z. Z., & Sobey, A. (2020). A comparative review between Genetic Algorithm use in composite optimisation and the state-of-the-art in evolutionary computation. Composite Structures, 233, 111739. doi: https://doi.org/10.1016/j.compstruct.2019.111739
DOI: http://dx.doi.org/10.35671/telematika.v15i1.1307
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .