Detection and Classification of Vehicles on the Bekasi Toll Road Using the Gaussian Mixture Models Method and Morphological Operations

Rifki Kosasih, Hidayat Taufik Akbar


Traffic surveillance was initially carried out directly using CCTV, but this kind of surveillance was not possible for a full day by the security forces. In addition, with the increasing growth of vehicles in Indonesia, a method is needed that can be used to assist security forces in monitoring traffic such as detecting and automatically counting the number of vehicles. Therefore, in our research, we propose a method that can detect vehicles, and count the number of vehicles from video recordings on the Bintara Bekasi toll road using background substraction methods such as gaussian mixture models and morphological operations. The results showed that the vehicle detection accuracy rate was 86.3636%, the precision was 89.0625%, and the recall was 96.6101%. In this study, vehicle classification was also carried out based on the detection results into two types of vehicles, namely cars and trucks. From the results of the research, the classification accuracy rate was obtained at 85.9649%.


CCTV; Background Substraction; Gaussian Mixture Models; morphological operations

Full Text:

PDF (Indonesian)


Gu, J., Chen, J., Zhou, Q., & Zhang, H. (2007). Gaussian Mixture Model of Texture for Extracting Residential Area from High-Resolution Remotely Sensed Imagery. The 5th ISPRS Workshop on DMGISs, 157–162.

Kadir, A. (2013). Teori dan Aplikasi Pengolahan Citra. Andi.

Kosasih, R. (2020). Automatic Segmentation of Abdominal Aortic Aneurism ( AAA ) By Using Active Contour Models. Scientific Journal of Informatics, 7(1), 66–74. doi: 10.15294/sji.v7i1.23625

Kosasih, R. (2021). Pendeteksian Kendaraan Menggunakan Metode Median Filter. Jurnal Ilmiah Komputasi, 20(1), 53–58. doi: 10.32409/jikstik.20.1.402

Kosasih, R., & Arfiansyah, M. (2020). Pendeteksian Kendaraan dengan Menggunakan Metode Running Average Background Substraction dan Morfologi Citra. Jurnal Media Informatika Budidarma, 4(4), 979–985. doi: 10.30865/mib.v4i4.2315

Kosasih, R., Fahrurozi, A., & Mardhiyah, I. (2020). Vehicle Detection Using Principal Component Analysis. Jurnal Ilmiah Komputasi, 19(2), 155–160. doi: 10.32409/jikstik.19.2.83

Lestari, D. P., Kosasih, R., Handhika, T., Murni, Sari, I., & Fahrurozi, A. (2019). Fire Hotspots Detection System on CCTV Videos Using You only Look Once (YOLO) Method and Tiny YOLO Model for High Buildings Evacuation. 2nd International Conference of Computer and Informatics Engineering IC2IE, 87–92. doi: 10.1109/IC2IE47452.2019.8940842

Nascimento, J. C., & Marques, J. S. (2004). Novel Metrics for Performance Evaluation of Object Detection Algorithms. 6th International Workshop on Performance Evaluation for Track- Ing and Surveillance, 7–14. doi: 10.1109/TMM.2006.876287

Putri, N. N. (2016). Aplikasi pendeteksi objek bergerak pada Image Sequence Dengan Metode Background Substraction. Jurnal IlmiahTeknologi Dan Rekayasa, 21(3), 162–172.

Rad, A. G., Dehghani, A., & Karim, M. R. (2010). Vehicle Speed Detection in Video Image Sequences Using CVS Method. International Journal of Physical Sciences, 5(17), 2555–2563.

Rostianingsih, S., Adipranata, R., & Wibisono, F. S. (2008). Adaptive Background Dengan Metode Gaussian Mixture Models Untuk Real-Time Tracking. Jurnal Informatika, 9(1), 68–77. doi: 10.9744/informatika.9.1.68-77

Stauffer, C., & Grimson, W. E. L. (1999). Adaptive Background Mixture Models for Real-Time Tracking. In Computer Vision AndPattern Recognition.

Susanto, A. (2019). Penerapan Operasi Morfologi Matematika Citra Digital Untuk Ekstraksi Area Plat Nomor Kendaraan Bermotor. Pseudocode, 6(1), 49–57. doi: 10.33369/pseudocode.6.1.49-57

Tian, Q., Zhang, L., Wei, Y., Zhao, W., & Fei, W. (2013). Vehicle Detection and Tracking at Night in Video Surveillance. International Journal of Online Engineering, 9(6), 60–64. doi: 10.3991/ijoe.v9iS6.2828.

Umam, K., & Negara, B. S. (2016). Deteksi Obyek Manusia Pada Basis Data Video Menggunakan Metode Background Subtraction Dan Operasi Morfologi. CoreIT, 2(2), 31–40. doi: 10.24014/coreit.v2i2.2391

Wang, X., Sun, J., & Peng, H. (2013). Foreground Object Detecting Algorithm based on Mixture of Gaussian and Kalman Filter in Video

Surveillance. Journal of Computers, 8(3), 693–700. doi:10.4304/jcp.8.3.693-700



  • There are currently no refbacks.

Indexed by:       


ISSN 2442-4528 (online) | ISSN 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto Telp (0281) 623321 Fax (0281) 621662


Creative Commons License
This work is licensed under a  Creative Commons Attribution 4.0 International License.