Comparative Analysis of Support Vector Machine and IndoBERT Algorithms in Stance Detection on Political Issues in Social Media X: A Case Study of BPI Danantara

Dhammananda Taniputra, Beny Beny, Lidwina Demai Lucia, Rachel Velysha

Abstract


Stance detection is an NLP task aimed at identifying and classifying a writer’s attitude toward a topic as supportive, opposing, or neutral based on text analysis, providing deeper insights into public opinion and supporting data-driven decision-making. This study focuses on Indonesian society’s stance toward the National Investment Management Agency (BPI Danantara), which has received positive responses for its economic potential as well as negative reactions due to concerns over governance and corruption risks. In this research, a machine learning approach using the Support Vector Machine algorithm and a deep learning approach using the IndoBERT model were applied to detect pro, contra, and neutral stances in posts from the X social media platform. A total of 6,805 tweets were collected through scraping and manually labeled by three annotators. The dataset was then processed through cleaning, undersampling, and modeling, and evaluated using accuracy, precision, recall, F1-score, and ROC-AUC metrics. Experiments were conducted across various scenarios, including binary and three-class classification as well as balanced and imbalanced datasets, to assess the effectiveness of each model. The results indicate that IndoBERT consistently outperforms SVM across all scenarios, particularly in capturing nuanced stances in Indonesian text. However, statistical evaluation using the paired t-test and the Wilcoxon signed-rank test reveals that the performance differences between the two models are generally not statistically significant, except in the three-class classification scenario with undersampling, where IndoBERT shows a significant advantage in handling balanced multi-class stance detection. These findings demonstrate the advantage of Transformer-based approaches for complex stance detection tasks and highlight their potential for developing automated public opinion monitoring systems. Nevertheless, this study has limitations, including the relatively small dataset, the focus on a single social media platform, and the methods applied. Future research could explore larger and more diverse datasets, incorporate multiple social media platforms, and employ other Transformer-based models to enhance generalization and improve stance detection accuracy.

Keywords


Stance Detection;IndoBERT;SVM;Social Media;BPI Danantara;

Full Text:

Link Download

References


Adib, N., & Reflan Nuari. (2025). Performance Comparison Of BERT Metrics and Classical Machine Learning Models (SVM,Naive Bayes) for Sentiment Analysis. INOVTEK Polbeng - Seri Informatika, 10(2), 741–752.

Alamoodi, A. H., Zaidan, B. B., Zaidan, A. A., Albahri, O. S., Mohammed, K. I., Malik, R. Q., Almahdi, E. M., Chyad, M. A., Tareq, Z., Albahri, A. S., Hameed, H., & Alaa, M. (2020). Sentiment analysis and its applications in fighting COVID-19 and infectious diseases: A systematic review. Expert Systems with Applications, 167.

Alturayeif, N., Luqman, H., & Ahmed, M. (2023). A systematic review of machine learning techniques for stance detection and its applications. Neural Computing and Applications, 35(7), 5113–5144.

Ariyuda, N. M. C. K. (2025). Analisis sentimen opini Twitter terhadap Capres dan Cawapres 2024 dengan teknik Naïve Bayes: Tinjauan literatur. Jurnal Nasional Komputasi dan Teknologi Informasi, 8(1), 138–143.

Ata Amrullah. (2025). Analisis Sentimen Publik terkait Migrasi Tenaga Kerja Indonesia di Platform X menggunakan SVM-IndoBERT. UJMC (Unisda Journal of Mathematics and Computer Science), 11(1), 53–63.

Burnham, M. (2024). Stance detection: a practical guide to classifying political beliefs in text. Political Science Research and Methods, 1–18.

Catur Diah Ayu, Fasya Febiani, Furkon Ardhani, Leonardo, M., Nabillah Syahwa, & Nuraya, A. S. (2025). Keterkaitan Danantara dengan Stabilitas Keuangan Makro di Indonesia: Sebuah Pendekatan Teori Ekonomi Makro. Indonesian Research Journal on Education, 5(2), 1026–1031.

Daro, N. M., & Harris, F. (2025). Pertanggungjawaban Badan Pengelola Investasi Daya Anagata Nusantara (Danantara) Jika Terjadi Kerugian dalam Pengelolaan Investasi Danantara. Arus Jurnal Sosial Dan Humaniora, 5(2), 1669–1676.

Djema, F., & Suria, N. O. (2025). Public Sentiment Analysis of Danantara Policy through Social Media X Using SVM and Random Forest. INOVTEK Polbeng - Seri Informatika, 10(2), 1207–1217.

Fathoni Fathoni, Ibrahim, A., Mumtaz, F. R., Zaky, M. A., Muhammad Jodi Pratama, & Kurniawan, I. A. (2025). Analisis Sentimen Public Twitter Terhadap Kebijakan Pemerintah Menggunakan Metode Svm (Studi Kasus : Ruu Tni ). JATI (Jurnal Mahasiswa Teknik Informatika), 9(4), 6322–6329.

Ghofur, A., Yudi Sukmono, & Aji Ery Burhandenny. (2024). COMPARISON OF SUPPORT VECTOR MACHINE AND INDOBERT IN NON-FUNCTIONAL REQUIREMENT CLASSIFICATION OF APPLICATION USER REVIEWS. Jurnal Teknik Informatika (Jutif), 5(4), 1035–1042.

Hamad, O., Hamdi, A., Hamdi, S., & Shaban, K. (2022). StEduCov: An Explored and Benchmarked Dataset on Stance Detection in Tweets towards Online Education during COVID-19 Pandemic. Big Data and Cognitive Computing, 6(3), 88.

Hidayati, R., Sari, N. A., Ashuratirana, N., Ardhini, P., Tanjung, K. N., & Nuraya, A. S. (2025). Dampak Danantara Terhadap Pertumbuhan Ekonomi dan Laju Pembangunan di Indonesia. Jurnal Keuangan Dan Perbankan, 21(2), 197–208.

Hukunala, S. V. (2025). Eksistensi Danantara dari Aspek Good Corporate Governance. Locus: Jurnal Konsep Ilmu Hukum, 5(2), 73–82.

I Gede Sukarmo, & Khairul Aswadi. (2025). Danantara dan Paradigma Baru Pengelolaan Aset Negara Tinjauan Kritis terhadap Legalitas dan Model Tata Kelola menurut Undang-undang Nomor 1 Tahun 2025. Commerce Law, 5(1), 126–136. https://doi.org/10.29303/commercelaw.v5i1.7423

Ii Sumantri. (2023). Transparansi Dalam Pemerintahan: Tinjauan Kegagalan Pencegahan Korupsi Di Indonesia. Journal of Scientech Research and Development, 5(1), 97–109.

Julkifli, N. N. binti A., Mail, H. A. A. bin H., & Bakar, N. S. binti H. A. (2022). Skandal Kewangan 1MDB dan Tumbangnya Kuasa Politik Najib Razak, 2009-2018 di Malaysia: Satu Tinjauan. SOSIOHUMANIKA, 15(2), 59–90.

Küçük, D., & Can, F. (2020). Stance Detection. ACM Computing Surveys, 53(1), 1–37.

Merdiansah, R., Siska, S., & Azhari Ali Ridha. (2024). Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT. Jurnal Ilmu Komputer Dan Sistem Informasi, 7(1), 221–228.

Muh, N., & Trubus Rahardiansah. (2025). Peran dan Kedudukan Danantara Dalam Mengelola Investasi Sebagai Badan Sovereign Wealth Fund (SWF). Jurnal Ilmu Sosial Politik, 2(6), 969–988.

Oktri Defilania, & Silalahi, W. (2025). Badan Pengelola Investasi Daya Anagata Nusantara: Peluang Dan Tantangan Dalam Reformasi Ekonomi Indonesia. Jurnal Intelek Insan Cendikia, 2(4), 7125–7134.

Putri Ni'matul Maula, Danie, E. V., Muhammad, & Rainhard, S. (2025). Pengawasan Dan Pertanggungjawaban Badan Pengelola Investasi Danantara Dalam Pengelolaan Risiko Kerugian Investasi Keuangan Negara. Jurnal Ilmu Hukum, 4(2), 129–143.

Reema Khaled AlRowais, & Duaa Alsaeed. (2023). Arabic stance detection of COVID-19 vaccination using transformer-based approaches: a comparison study. Arab Gulf Journal of Scientific Research.

S, R. A. W., Rahmadi, R., & Rajagede, R. A. (2021). Analisis Sentimen politik berdasarkan big data dari media Sosial YouTube: Sebuah Tinjauan Literatur. AUTOMATA.




DOI: http://dx.doi.org/10.35671/telematika.v18i2.3219

Refbacks

  • There are currently no refbacks.


 



Indexed by:

   

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .