Performance Analysis of Ensemble Learning Models in Heart Failure Prediction: Random Forest, AdaBoost, and XGBoost

Beny Beny, Herti Yani, Gangga Ramadhan Putra Yupu

Abstract


Heart failure remains a major global health challenge, and early prediction is essential for improving patient outcomes. This study evaluates three ensemble learning methods, namely Random Forest, AdaBoost, and XGBoost, using the Heart Failure Prediction dataset containing 918 patient records from Kaggle. A quantitative experimental design was applied, including preprocessing with KNN imputation, model development, and evaluation using 10-Fold Cross Validation. Performance was assessed through accuracy, precision, recall, F1-score, and AUC-ROC. Random Forest achieved the highest accuracy (0.868), recall (0.907), F1-score (0.884), and AUC-ROC (0.922), while AdaBoost produced the highest precision (0.874). Although the models showed generally similar performance patterns, statistical tests revealed notable distinctions: RF vs. XGB exhibited significant differences in Recall (p = 0.011) and F1-score (p = 0.016), and the Friedman test identified a significant difference in Recall (p = 0.034) across the three models. Feature importance analysis showed that the models consistently emphasized clinically relevant variables, with ST-segment slope, Oldpeak, and exercise-induced angina appearing among the most influential predictors. These features align with recent cardiovascular evidence identifying exercise ECG indicators and stress-response variables as strong predictors of cardiac risk. Overall, the results suggest that recall-related behaviour is the main performance differentiator among the ensemble models, with Random Forest providing a modest advantage in identifying true heart failure cases. The study is limited by its reliance on a single dataset and a relatively small sample size, which may restrict the generalizability of the findings.

Keywords


Heart Failure Prediction; Ensemble Learning; Random Forest; AdaBoost; XGBoost;

Full Text:

Link Download

References


Adi, S., & Wintarti, A. (2022). Komparasi metode support vector machine (SVM), K-Nearest Neighbors (KNN), Dan Random Forest (RF) untuk prediksi penyakit gagal jantung. MATHunesa: Jurnal Ilmiah Matematika, 10(2), 258–268.

Arisandi, R., & Dewi, A. L. (2024). ANALISIS FAKTOR RISIKO GAGAL JANTUNG DENGAN REGRESI LOGISTIK BERBASIS IoMT. Jurnal Gaussian, 12(4), 549–559.

Artanti, V., Faisal, M., & Kurniawan, F. (2024). Klasifikasi Cardiovascular Diseases Menggunakan Algoritma K-Nearest Neighbors (KNN). Techno. Com, 23(2).

Atthohiroh, A., Ayu, R., & Maharani, S. (2023). PENERAPAN METODE NAIVE BAYES UNTUK MEMPREDIKSI PENYAKIT JANTUNG. Jurnal Teknisi, 3(1), 8–13.

Breiman, L. (2001). Random forests. Machine Learning, 45, 5–32.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, 785–794.

Desiani, A., Amran, A., Andriani, Y., Wahyuni, T., & Rizki, F. (2025). PERBANDINGAN ALGORITMA LOGISTIC REGRESSION DAN ADAPTIVE BOOSTING (ADABOOST) DALAM KLASIFIKASI PENYAKIT GAGAL JANTUNG. Jurnal Teknologi Informasi: Jurnal Keilmuan Dan Aplikasi Bidang Teknik Informatika, 19(1), 72–78.

Farida, L. N., & Bahri, S. (2024). Klasifikasi Gagal Jantung menggunakan Metode SVM (Support Vector Machine). Komputika: Jurnal Sistem Komputer, 13(2), 149–156.

Febrian, M. R., Saifudin, I., & Suharso, W. (2024). Prediksi Penyakit Gagal Jantung Menggunakan Algoritma Naive Bayes. Jurnal Smart Teknologi, 5(6), 757–766.

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

Hasanah, Q., Oktavianto, H., & Rahayu, Y. D. (2022). Analisis Algoritma Gaussian Naive Bayes Terhadap Klasifikasi Data Pasien Penderita Gagal Jantung. Jurnal Smart Teknologi, 3(4), 382–389.

Hermawan, K. A., Rizki, A., Sinaga, D. K., & Suwarman, H. R. (2024). Prediksi Gagal Jantung Berbasis Machine Learning Menggunakan Support Vector Machine dan Regresi Logistik. Seminar Nasional Penelitian (SEMNAS CORISINDO 2024), 436–441.

Lumi, A. P., Joseph, V. F. F., & Polii, N. C. I. (2021). Rehabilitasi Jantung pada Pasien Gagal Jantung Kronik. Jurnal Biomedik: JBM, 13(3), 309–316.

Pangaribuan, J. J., Tanjaya, H., & Kenichi, K. (2021). Mendeteksi penyakit jantung menggunakan machine learning dengan algoritma logistic regression. Journal Information System Development (ISD), 6(2), 1–10.

Pradana, D., Luthfi Alghifari, M., Farhan Juna, M., & Palaguna, D. (2022). Klasifikasi Penyakit Jantung Menggunakan Metode Artificial Neural Network. Indonesian Journal of Data and Science, 3(2), 55–60. https://doi.org/10.56705/ijodas.v3i2.35

Prasetyo, S. Y. (2023). Prediksi gagal jantung menggunakan artificial neural network. Jurnal Saintekom: Sains, Teknologi, Komputer Dan Manajemen, 13(1), 79–88.

Pratama, Y., Prayitno, A., Azrian, D., Aini, N., Rizki, Y., & Rasywir, E. (2022). Klasifikasi Penyakit Gagal Jantung Menggunakan Algoritma K-Nearest Neighbor. Bulletin of Computer Science Research, 3(1), 52–56.

Putri, I. P. (2021). Analisis Performa Metode K-Nearest Neighbor (KNN) dan Crossvalidation pada Data Penyakit Cardiovascular. Indonesian Journal of Data and Science, 2(1), 21–28.

Rahayu, N. K., & Rifai, N. A. K. (2025). Penerapan Metode K-Nearest Neighbor untuk Mengklasifikasikan Penyakit Cardiovascular. Bandung Conference Series: Statistics, 5(1), 19–26.

Rahayu, S., Purnama, J. J., Pohan, A. B., Nugraha, F. S., Nurdiani, S., & Hadianti, S. (2020). Prediction of survival of heart failure patients using random forest. Jurnal Pilar Nusa Mandiri, 16(2), 255–260.

Rokom, R. (2022, September 22). Penyakit Jantung Penyebab Utama Kematian, Kemenkes Perkuat Layanan Primer – Sehat Negeriku. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20220929/0541166/penyakit-jantung-penyebab-utama-kematian-kemenkes-perkuat-layanan-primer/

Sitanggang, B. F., & Sitompul, P. (2024). Deteksi Awal Kelangsungan Hidup Pasien Gagal Jantung Menggunakan Machine Learning Metode Random Forest. Innovative: Journal Of Social Science Research, 4(2), 3347–3357.

Tamba, S. P. (2022). Prediksi Penyakit Gagal Jantung Dengan Menggunakan Random forest. Jurnal Sistem Informasi Dan Ilmu Komputer, 5(2), 176–181.

Tasia, E., Ismail, R. Z. I. Z., Loka, S. K. P., Ikhsani, Y., & Ocviani, R. (2023). Metode Klasifikasi Supervised Learning pada Penyakit Gagal Jantung: Supervised Learning Classification Method in heart failure. SENTIMAS: Seminar Nasional Penelitian Dan Pengabdian Masyarakat, 1–7.




DOI: http://dx.doi.org/10.35671/telematika.v19i1.3218

Refbacks

  • There are currently no refbacks.


 



Indexed by:

   

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .