A Clustering-Popularity-based Model for Cold-Start Recommendations using User Attributes and Item Ratings
Abstract
Keywords
Full Text:
Link DownloadReferences
AbbasiRad, E., Keyvanpour, M. R., & Tohidi, N. (2025). Co-clustering method for cold start issue in collaborative filtering movie recommender system. Multimedia Tools and Applications, 84, 26817–26841.
Abdullah, N. A., Rasheed, R. A., Nasir, M. H. N. M., & Rahman, M. M. (2021). Eliciting auxiliary information for cold start user recommendation: A survey. Applied Sciences, 11(20), 9608.
Ajaegbu, C. (2021). An optimized item-based collaborative filtering algorithm. Journal of Ambient Intelligence and Humanized Computing, 12, 10629-10636.
AlRossais, N., Kudenko, D., & Yuan, T. (2021). Improving cold-start recommendations using item-based stereotypes. User Modeling and User-Adapted Interaction, 31, 867-905.
Atas, M., Felfernig, A., Polat-Erdeniz, S., Popescu, A., Tran, T. N. T., & Uta, M. (2021). Towards psychology-aware preference construction in recommender systems: Overview and research issues. Journal of Intelligent Information Systems, 57, 467-489.
Auliya, I., Fitri, F., Amalita, N., & Mukhti, T. O. (2024). Comparison of K-Means and Fuzzy C-Means Algorithms for Clustering Based on Happiness Index Components Across Provinces in Indonesia. UNP Journal of Statistics and Data Science, 2(1), 114-121.
Cendana, M., & Kuo, R.-J. (2024). Categorical data clustering: A bibliometric analysis and taxonomy. Machine Learning and Knowledge Extraction, 6(2), 1009-1054.
Chaturvedi, A., Aylward, B., Shah, S., Graziani, G., Zhang, J., Manuel, B., . . . Kunkle, S. (2023). Content recommendation systems in web-based mental health care: real-world application and formative evaluation. JMIR Formative Research, 7(1), e38831.
Dinh, T., Wong, H., Fournier-Viger, P., Lisik, D., Ha, M.-Q., Dam, H.-C., & Huynh, V.-N. (2025). Categorical data clustering: 25 years beyond K-modes. Expert Systems with Applications, 272, 126608.
Dorman, K. S., & Maitra, R. (2022). An efficient k‐modes algorithm for clustering categorical datasets. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(1), 83-97.
Fkih, F. (2022). Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison. Journal of King Saud University-Computer and Information Sciences, 34(9), 7645-7669.
Gajjar, S., & Rehevar, M. (2023). Popularity-Based BERT for Product Recommendation. In Computational Intelligence: Lecture Notes in Electrical Engineering (Vol. 968, pp. 629-640). Singapore: Springer.
Gavva, S. T., Karthik, C S, & Punna, S. (2024). Clustering categorical data: Soft rounding k-modes. Information and Computation, 296, 105115.
Hasan, S. N., & Khatwal, R. (2022). Cold start problem in recommendation system: A solution model based on clustering and association rule techniques. Proceedings of the 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1-8). Aligarh, India: IEEE.
He, X., Liu, Q., & Jung, S. (2024). The impact of recommendation system on user satisfaction: A moderated mediation approach. Journal of Theoretical and Applied Electronic Commerce Research, 19(1), 448-466.
Ifada, N., Sophan, M. K., Syachrudin, I., & Sugiharto, S. Z. (2019). An Efficient Scheme to Combine The User Demographics and Item Attribute for Solving Data Sparsity and Cold-start Problems Proceedings of the 3rd International Conference on Informatics and Computational Sciences (ICICoS 2019) (pp. 1-6). Semarang, Indonesia: IEEE.
Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Jia, H. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.
Jing, J., Zhang, Y., Zhou, X., & Shen, Z. (2023). Capturing popularity trends: A simplistic non-personalized approach for enhanced item recommendation. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (pp. 1014-1024). New York, NY, United States: ACM.
Kannout, E., Grodzki, M., & Grzegorowski, M. (2023). Towards addressing item cold-start problem in collaborative filtering by embedding agglomerative clustering and FP-growth into the recommendation system. Computer Science and Information Systems, 20(4), 1343-1366.
Kembaren, R. C. G. I., Sitompul, O. S., & Sawaluddin, S. (2022). Analysis clustering using normalized cross correlation in fuzzy C-means clustering algorithm. Sinkron: Jurnal dan Penelitian Teknik Informatika, 6(4), 2262-2271.
Kumar, C., Chowdary, C. R., & Meena, A. K. (2024). Recent trends in recommender systems: a survey. International Journal of Multimedia Information Retrieval, 13, 41.
Kużelewska, U. (2021). Quality of recommendations and cold-start problem in recommender systems based on multi-clusters. Proceedings of the 21st International Conference on Computational Science (ICCS 2021) (pp. 72-86). Cham, Switzerland: Springer.
Panda, D. K., & Ray, S. (2022). Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review. Journal of Intelligent Information Systems, 59(2), 341-366.
Panteli, A., & Boutsinas, B. (2023). Addressing the cold-start problem in recommender systems based on frequent patterns. Algorithms, 16(4), 182.
Qian, K., & Jain, S. (2024). Digital content creation: An analysis of the impact of recommendation systems. Management Science, 70(12), 8668-8684.
Roy, D., & Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9, 59.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web (pp. 285-295). New York, NY, United States: ACM.
Saxena, R., Kaur, S., Ahuja, H., & Narang, S. (2024). Leveraging item attribute popularity for group recommendation. International Journal of System Assurance Engineering and Management, 15(6), 2645-2655.
Suryanarayana, G., Prakash K, L. N. C., Mahesh, P. C. S., & Bhaskar, T. (2022). Novel dynamic k-modes clustering of categorical and non categorical dataset with optimized genetic algorithm based feature selection. Multimedia Tools and Applications, 81, 24399-24418.
Tey, F. J., Wu, T.-Y., Lin, C.-L., & Chen, J.-L. (2021). Accuracy improvements for cold-start recommendation problem using indirect relations in social networks. Journal of Big Data, 8, 98.
Tombuş, A. C., Eroğlu, E., & Altun, İ. H. (2024). Impact Of Recommender Systems in E-Commerce–A Worldwide Empirical Analysis. Journal of Innovative Science and Engineering, 8(2), 251-265.
Wang, J., & Hu, R. (2024). A two-stage recommendation optimization algorithm based on item popularity and user features. Heliyon, 10(9), e38195.
Yoo, H., Qiu, R., Xu, C., Wang, F., & Tong, H. (2025). Generalizable recommender system during temporal popularity distribution shifts. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1833-1843). New York, NY, United States: ACM.
Yuan, H., & Hernandez, A. A. (2023). User cold start problem in recommendation systems: A systematic review. IEEE Access, 11, 136958-136977.
DOI: http://dx.doi.org/10.35671/telematika.v19i1.3202
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .




