A Clustering-Popularity-based Model for Cold-Start Recommendations using User Attributes and Item Ratings

Noor Ifada, Moh Nikmat, Weni Pratiwi Suristiar, Mochammad Kautsar Sophan

Abstract


Recommendation systems face a major challenge known as the cold-start problem, which occurs when the system lacks sufficient user interaction data. Thus, there is no basis for a recommendation. Existing approaches, such as co-clustering methods and non-personalized popularity models, often struggle to effectively combine heterogeneous user and item data (categorical user attributes and numerical item ratings) or to capture latent group-level preferences. To bridge this gap, we propose a new clustering-popularity-based model that independently groups users and items using two separate algorithms and integrates them through a popularity measure. Users are clustered using K-Modes based on demographic attributes, while items are clustered separately using either K-Means or Fuzzy C-Means (FCM) based on rating patterns. A rating-aware popularity score is then computed within each item cluster. To generate recommendations for new users, we assign them to the appropriate user demographic clusters and suggest items from the most popular clusters. Experiments on the MovieLens 100K dataset show that the FCM-based variant, ClusterPopRec-FCM, consistently outperforms both a K-Means-based variant (ClusterPopRec-KMeans) and the traditional item-based baseline across all cold-start scenarios (extreme, moderate, and non-cold-start scenarios). In the extreme cold-start scenario, ClusterPopRec-FCM achieved Precision@5=54.65 and DCG@5=1.66, which in comparison to the baseline represents percentage increases of 149.7% and 110.1% respectively, with statistical significance  < 0.001. These results show the benefit of soft clustering (FCM) in capturing nuanced item relationships and demonstrate the effectiveness of hybrid models that combine demographic clustering with in-cluster popularity scores. This work offer a effective solution for cold-start scenarios and heterogeneity, allowing advancement in recommendation systems research.

Keywords


Cold-start; Clustering; Item popularity; Recommendation system

Full Text:

Link Download

References


AbbasiRad, E., Keyvanpour, M. R., & Tohidi, N. (2025). Co-clustering method for cold start issue in collaborative filtering movie recommender system. Multimedia Tools and Applications, 84, 26817–26841.

Abdullah, N. A., Rasheed, R. A., Nasir, M. H. N. M., & Rahman, M. M. (2021). Eliciting auxiliary information for cold start user recommendation: A survey. Applied Sciences, 11(20), 9608.

Ajaegbu, C. (2021). An optimized item-based collaborative filtering algorithm. Journal of Ambient Intelligence and Humanized Computing, 12, 10629-10636.

AlRossais, N., Kudenko, D., & Yuan, T. (2021). Improving cold-start recommendations using item-based stereotypes. User Modeling and User-Adapted Interaction, 31, 867-905.

Atas, M., Felfernig, A., Polat-Erdeniz, S., Popescu, A., Tran, T. N. T., & Uta, M. (2021). Towards psychology-aware preference construction in recommender systems: Overview and research issues. Journal of Intelligent Information Systems, 57, 467-489.

Auliya, I., Fitri, F., Amalita, N., & Mukhti, T. O. (2024). Comparison of K-Means and Fuzzy C-Means Algorithms for Clustering Based on Happiness Index Components Across Provinces in Indonesia. UNP Journal of Statistics and Data Science, 2(1), 114-121.

Cendana, M., & Kuo, R.-J. (2024). Categorical data clustering: A bibliometric analysis and taxonomy. Machine Learning and Knowledge Extraction, 6(2), 1009-1054.

Chaturvedi, A., Aylward, B., Shah, S., Graziani, G., Zhang, J., Manuel, B., . . . Kunkle, S. (2023). Content recommendation systems in web-based mental health care: real-world application and formative evaluation. JMIR Formative Research, 7(1), e38831.

Dinh, T., Wong, H., Fournier-Viger, P., Lisik, D., Ha, M.-Q., Dam, H.-C., & Huynh, V.-N. (2025). Categorical data clustering: 25 years beyond K-modes. Expert Systems with Applications, 272, 126608.

Dorman, K. S., & Maitra, R. (2022). An efficient k‐modes algorithm for clustering categorical datasets. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(1), 83-97.

Fkih, F. (2022). Similarity measures for Collaborative Filtering-based Recommender Systems: Review and experimental comparison. Journal of King Saud University-Computer and Information Sciences, 34(9), 7645-7669.

Gajjar, S., & Rehevar, M. (2023). Popularity-Based BERT for Product Recommendation. In Computational Intelligence: Lecture Notes in Electrical Engineering (Vol. 968, pp. 629-640). Singapore: Springer.

Gavva, S. T., Karthik, C S, & Punna, S. (2024). Clustering categorical data: Soft rounding k-modes. Information and Computation, 296, 105115.

Hasan, S. N., & Khatwal, R. (2022). Cold start problem in recommendation system: A solution model based on clustering and association rule techniques. Proceedings of the 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT) (pp. 1-8). Aligarh, India: IEEE.

He, X., Liu, Q., & Jung, S. (2024). The impact of recommendation system on user satisfaction: A moderated mediation approach. Journal of Theoretical and Applied Electronic Commerce Research, 19(1), 448-466.

Ifada, N., Sophan, M. K., Syachrudin, I., & Sugiharto, S. Z. (2019). An Efficient Scheme to Combine The User Demographics and Item Attribute for Solving Data Sparsity and Cold-start Problems Proceedings of the 3rd International Conference on Informatics and Computational Sciences (ICICoS 2019) (pp. 1-6). Semarang, Indonesia: IEEE.

Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., & Jia, H. (2023). K-means clustering algorithms: A comprehensive review, variants analysis, and advances in the era of big data. Information Sciences, 622, 178-210.

Jing, J., Zhang, Y., Zhou, X., & Shen, Z. (2023). Capturing popularity trends: A simplistic non-personalized approach for enhanced item recommendation. Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (pp. 1014-1024). New York, NY, United States: ACM.

Kannout, E., Grodzki, M., & Grzegorowski, M. (2023). Towards addressing item cold-start problem in collaborative filtering by embedding agglomerative clustering and FP-growth into the recommendation system. Computer Science and Information Systems, 20(4), 1343-1366.

Kembaren, R. C. G. I., Sitompul, O. S., & Sawaluddin, S. (2022). Analysis clustering using normalized cross correlation in fuzzy C-means clustering algorithm. Sinkron: Jurnal dan Penelitian Teknik Informatika, 6(4), 2262-2271.

Kumar, C., Chowdary, C. R., & Meena, A. K. (2024). Recent trends in recommender systems: a survey. International Journal of Multimedia Information Retrieval, 13, 41.

Kużelewska, U. (2021). Quality of recommendations and cold-start problem in recommender systems based on multi-clusters. Proceedings of the 21st International Conference on Computational Science (ICCS 2021) (pp. 72-86). Cham, Switzerland: Springer.

Panda, D. K., & Ray, S. (2022). Approaches and algorithms to mitigate cold start problems in recommender systems: a systematic literature review. Journal of Intelligent Information Systems, 59(2), 341-366.

Panteli, A., & Boutsinas, B. (2023). Addressing the cold-start problem in recommender systems based on frequent patterns. Algorithms, 16(4), 182.

Qian, K., & Jain, S. (2024). Digital content creation: An analysis of the impact of recommendation systems. Management Science, 70(12), 8668-8684.

Roy, D., & Dutta, M. (2022). A systematic review and research perspective on recommender systems. Journal of Big Data, 9, 59.

Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based Collaborative Filtering Recommendation Algorithms. Proceedings of the 10th International Conference on World Wide Web (pp. 285-295). New York, NY, United States: ACM.

Saxena, R., Kaur, S., Ahuja, H., & Narang, S. (2024). Leveraging item attribute popularity for group recommendation. International Journal of System Assurance Engineering and Management, 15(6), 2645-2655.

Suryanarayana, G., Prakash K, L. N. C., Mahesh, P. C. S., & Bhaskar, T. (2022). Novel dynamic k-modes clustering of categorical and non categorical dataset with optimized genetic algorithm based feature selection. Multimedia Tools and Applications, 81, 24399-24418.

Tey, F. J., Wu, T.-Y., Lin, C.-L., & Chen, J.-L. (2021). Accuracy improvements for cold-start recommendation problem using indirect relations in social networks. Journal of Big Data, 8, 98.

Tombuş, A. C., Eroğlu, E., & Altun, İ. H. (2024). Impact Of Recommender Systems in E-Commerce–A Worldwide Empirical Analysis. Journal of Innovative Science and Engineering, 8(2), 251-265.

Wang, J., & Hu, R. (2024). A two-stage recommendation optimization algorithm based on item popularity and user features. Heliyon, 10(9), e38195.

Yoo, H., Qiu, R., Xu, C., Wang, F., & Tong, H. (2025). Generalizable recommender system during temporal popularity distribution shifts. Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery and Data Mining (pp. 1833-1843). New York, NY, United States: ACM.

Yuan, H., & Hernandez, A. A. (2023). User cold start problem in recommendation systems: A systematic review. IEEE Access, 11, 136958-136977.




DOI: http://dx.doi.org/10.35671/telematika.v19i1.3202

Refbacks

  • There are currently no refbacks.


 



Indexed by:

   

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .