Addressing Algorithmic Bias and Data Privacy in Human Resource Management

Hendi Herdiana, Munir Munir, Ratih Hurriyati, Mokh. Adib Sultan, Frans David Tua, Buriyeva Kibrio Ergashevna

Abstract


Artificial intelligence (AI) has transformed Human Resource Management (HRM) by automating recruitment, enhancing performance evaluation, and enabling data-driven workforce planning. However, its adoption raises critical concerns related to algorithmic bias, data privacy, and employee trust, creating a significant gap in understanding how these technical and ethical dimensions interact. This study aims to synthesize current evidence on the impact of AI on HRM functions, the challenges associated with fairness and privacy, and employee perceptions of AI-enabled HRM systems. A Systematic Literature Review (SLR) was conducted following PRISMA 2020 guidelines and structured using the PICOC framework. Searches across major scientific databases identified 1,042 records, of which 35 peer-reviewed studies published between 2020 and 2025 met all eligibility criteria. The findings show that AI enhances HRM efficiency and decision quality but presents recurring risks of algorithmic bias, opaque decision-making, and weak data governance. Employee perceptions of fairness, transparency, and privacy strongly influence trust and acceptance of AI-based HRM systems. The review concludes that effective AI adoption requires socio-technical integration combining algorithmic capability with robust governance and ethical safeguards. The study introduces an integrated conceptual model linking AI capabilities, HRM functions, data governance, employee trust, and organizational outcomes—representing a key theoretical contribution and a novel synthesis of previously fragmented research.

Keywords


artificial intelligence; data privacy; algorithmic bias; human resources management

Full Text:

Link Download

References


Deeks, J. J., Bossuyt, P. M., Leeflang, M. M., & Takwoingi, Y. (Ed.). (2023). Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy (1 ed.). Wiley. https://doi.org/10.1002/9781119756194

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4

Venugopal, M., Madhavan, V., Prasad, R., & Raman, R. (2024). Transformative AI in human resource management: Enhancing workforce planning with topic modeling. Cogent Business & Management, 11(1), 2432550. https://doi.org/10.1080/23311975.2024.2432550

Ali, O., & Kallach, L. (2024). Artificial Intelligence Enabled Human Resources Recruitment Functionalities: A Scoping Review. Procedia Computer Science, 232, 3268–3277. https://doi.org/10.1016/j.procs.2024.02.142

HR Digital Transformation Architect, US Foods Inc. Rosemont, IL USA, & Nyathani, R. (2023). AI in Performance Management: Redefining Performance Appraisals in the Digital Age. Journal of Artificial Intelligence & Cloud Computing, 1–5. https://doi.org/10.47363/JAICC/2023(2)134

Majrashi, K. (2025). Employees’ perceptions of the fairness of AI-based performance prediction features. Cogent Business & Management, 12(1), 2456111. https://doi.org/10.1080/23311975.2025.2456111

Abasaheb, S. A., & Subashini, R. (2023). Enhancing HR Efficiency Through the Integration of Artificial Intelligence and Internet of Things: A Study on AI Implementation in Human Resource Management. ICST Transactions on Scalable Information Systems. https://doi.org/10.4108/eetsis.4208

Khalifa, M., Albadawy, M., & Iqbal, U. (2024). Advancing clinical decision support: The role of artificial intelligence across six domains. Computer Methods and Programs in Biomedicine Update, 5, 100142. https://doi.org/10.1016/j.cmpbup.2024.100142

Moloi, T., & Marwala, T. (2020). The agency theory. In Adv. Inf. Knowl. Process. (pp. 95–102). Springer; https://doi.org/10.1007/978-3-030-42962-1_11

Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Introduction to Artificial Intelligence. Dalam Lect. Notes Civ. Eng. (Vol. 163, hlm. 1–15). Springer Science and Business Media Deutschland GmbH; https://doi.org/10.1007/978-981-16-2842-9_1

Naves, É. A. (2024). Bioethics and artificial intelligence: A current overview of the literature. Revista Bioetica, 32. https://doi.org/10.1590/1983-803420243552ES

Darda, P., & Pendse, M. K. (2025). The impact of artificial intelligence (AI) transformation on the financial sector from the trading to security operations. Dalam Shaping Cutting-Edge Technol. And Appl. For Digit. Banking and Financial Services (hlm. 322–339). Taylor and Francis; https://doi.org/10.4324/9781003501947-20

Sloane, E. B., & J. Silva, R. (2020). Artificial intelligence in medical devices and clinical decision support systems. Dalam Clinical Engineering Handbook (hlm. 556–568). Elsevier. https://doi.org/10.1016/B978-0-12-813467-2.00084-5

Hemalatha, A., Kumari, P. B., Nawaz, N., & Gajenderan, V. (2021). Impact of Artificial Intelligence on Recruitment and Selection of Information Technology Companies. Proc. - Int. Conf. Artif. Intell. Smart Syst., ICAIS, 60–66. https://doi.org/10.1109/ICAIS50930.2021.9396036

Caylan, S. (2024). Role of human resource management on strategic management. Dalam Trends, Chall., and Practices in Contemp. Strateg. Manag. (hlm. 51–69). IGI Global; https://doi.org/10.4018/9798369311554.ch003

Tang, G., & Wei, L.-Q. (2025). Strategic Human Resource Management. In Strategic Hum. Resource Management (p. 309). World Scientific Publishing Co.;https://doi.org/10.1142/q0462

Xu, X. (2010). The application of strategic human resource management in staff training. Int. Conf. Manage. Serv. Sci., MASS. 2010 International Conference on Management and Service Science, MASS 2010. https://doi.org/10.1109/ICMSS.2010.5577966

Zhang, Y. (2011). Development strategy of information industry based on the view of current human resources in China. Proc. - Int. Conf. Inf. Technol., Comput. Eng. Manage. Sci., ICM, 4, 207–210. https://doi.org/10.1109/ICM.2011.146

Zhou, L. (2024). Linkage between strategic human resource management and organisational effectiveness in enterprises combining multivariate statistical analysis methods. Applied Mathematics and Nonlinear Sciences, 9(1). https://doi.org/10.2478/amns.2023.2.01053

García Carbonell, N., Martín Alcázar, F., & Sánchez Gardey, G. (2014). The moderating role of employees’ perception on strategic human resource management and its influence on organizational performance. Revista Europea de Direccion y Economia de la Empresa, 23(3), 137–146. https://doi.org/10.1016/j.redee.2014.03.002

Hourani, N. (2025). A Proposed Vision for Using Artificial Intelligence in Enhancing Strategic Value of Human Resources. International Journal of Industrial Engineering and Production Research, 36(2), 39–51. https://doi.org/10.22068/ijiepr.36.2.2302

Revillod, G. (2025). Trust influence on AI HR tools perceived usefulness in Swiss HRM: the mediating roles of perceived fairness and privacy concerns. AI and Society. https://doi.org/10.1007/s00146-025-02216-x

Mishra, R., & Jadeja, D. (2025). A literature review on the impact of AI-enhanced HRIS on employee retention and engagement. Dalam Intersecting Nat. Lang. Process. And FinTech Innovations in Serv. Mark. (hlm. 11–19). IGI Global; https://doi.org/10.4018/979-8-3693-9944-6.ch002

Elbadawi, M. A. (2025). Exploring the Impact of AI on Employee Engagement and Productivity in Human Resource Management. Dalam Stud. Big. Data. (Vol. 158, hlm. 541–550). Springer Science and Business Media Deutschland GmbH; https://doi.org/10.1007/978-3-031-70855-8_46

Kulal, A., Dinesh, S., & N, A. (2025). Organizational Impact of AI-Driven Recruitment Practices: A Mixed Methods Study. Journal of Computer Information Systems. https://doi.org/10.1080/08874417.2025.2508860

Goel, I., Bhaskar, Y., Kumar, N., Singh, S., Amanullah, M., Dhar, R., & Karmakar, S. (2025). Role of AI in empowering and redefining the oncology care landscape: Perspective from a developing nation. Frontiers in Digital Health, 7, 1550407. https://doi.org/10.3389/fdgth.2025.1550407

Majrashi, K. (2025). Employees’ perceptions of the fairness of AI-based performance prediction features. Cogent Business & Management, 12(1), 2456111. https://doi.org/10.1080/23311975.2025.2456111

Bastida, M., Vaquero García, A., Vazquez Taín, M. Á., & Del Río Araujo, M. (2025). From automation to augmentation: Human resource’s journey with artificial intelligence. Journal of Industrial Information Integration, 46. Scopus. https://doi.org/10.1016/j.jii.2025.100872

Kumar Tyagi, P., Jit Singh, V., Kumar Singh, A., Saxena, A., Tyagi, P., & Mehta, P. (2023). The Impact of Artificial Intelligence-Based Human Resource Management Systems on Organizational Efficiency. IEEE Uttar Pradesh Sect. Int. Conf. Electr., Electron. Comput. Eng., UPCON, 1727–1731. https://doi.org/10.1109/UPCON59197.2023.10434792

Madanchian, M. (2025). Frameworks for AI Integration in HR and Workforce Adaptation. Dalam Singh V., Li K.-C., Asari V.K., & Gonzalez Crespo R.R.G. (Ed.), Procedia Comput. Sci. (Vol. 258, hlm. 916–924). Elsevier B.V.; https://doi.org/10.1016/j.procs.2025.04.330

Sahyaja, Ch., Shankar, Ch., Zeeshan, K., & Nagaraj, N. (2024). Artificial Intelligence and Remote Work: Transforming Human Resource Management in a Post-Pandemic World. Int. Conf. Autom., Comput. Renew. Syst., ICACRS - Proc., 1555–1560. https://doi.org/10.1109/ICACRS62842.2024.10841784

Zhang, X., Wang, S., & Peng, L. (2023). Applications of Artificial Intelligence in Human Resource Management: Theoretical Framework and Future Research Directions. ACM Int. Conf. Proc. Ser., 857–861. https://doi.org/10.1145/3644523.3644676

Rukadikar, A., & Khandelwal, K. (2024). Navigating change: A qualitative exploration of chatbot adoption in recruitment. Cogent Business & Management, 11(1), 2345759. https://doi.org/10.1080/23311975.2024.2345759

Cho, W., Choi, S., & Choi, H. (2023). Human Resources Analytics for Public Personnel Management: Concepts, Cases, and Caveats. Administrative Sciences, 13(2), 41. https://doi.org/10.3390/admsci13020041

Armstrong, M., & Taylor, S. (2014). Armstrong’s handbook of human resource management practice (13. ed). Kogan Page.

Sheikh, H., Prins, C., & Schrijvers, E. (2023). Mission AI: The New System Technology. Springer International Publishing. https://doi.org/10.1007/978-3-031-21448-6

Lee, E.-J., Kim, Y.-H., Kim, N., & Kang, D.-W. (2017). Deep into the Brain: Artificial Intelligence in Stroke Imaging. Journal of Stroke, 19(3), 277–285. https://doi.org/10.5853/jos.2017.02054

Sousa Antunes, H., Freitas, P. M., Oliveira, A. L., Martins Pereira, C., Vaz De Sequeira, E., & Barreto Xavier, L. (Ed.). (2024). Multidisciplinary Perspectives on Artificial Intelligence and the Law (Vol. 58). Springer International Publishing. https://doi.org/10.1007/978-3-031-41264-6

Asemi, A., Ko, A., & Nowkarizi, M. (2021). Intelligent libraries: A review on expert systems, artificial intelligence, and robot. Library Hi Tech, 39(2), 412–434. https://doi.org/10.1108/LHT-02-2020-0038

Zogning, F. (2017). Agency Theory: A Critical Review.

Artificial Intelligence in Human Resource Management: Revolutionizing Recruitment, Performance, and Employee Development. (2024). Nanotechnology Perceptions, 20(S10). https://doi.org/10.62441/nano-ntp.v20iS10.6

Köchling, A., & Wehner, M. C. (2020). Discriminated by an algorithm: A systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development. Business Research, 13(3), 795–848. https://doi.org/10.1007/s40685-020-00134-w

Alzubaidi, L., Al-Sabaawi, A., Bai, J., Dukhan, A., Alkenani, A. H., Al-Asadi, A., Alwzwazy, H. A., Manoufali, M., Fadhel, M. A., Albahri, A. S., Moreira, C., Ouyang, C., Zhang, J., Santamaría, J., Salhi, A., Hollman, F., Gupta, A., Duan, Y., Rabczuk, T., … Gu, Y. (2023). Towards Risk‐Free Trustworthy Artificial Intelligence: Significance and Requirements. International Journal of Intelligent Systems, 2023(1), 4459198. https://doi.org/10.1155/2023/4459198




DOI: http://dx.doi.org/10.35671/telematika.v18i2.3177

Refbacks

  • There are currently no refbacks.


 



Indexed by:

   

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .