CNN-Based for Skin Cancer Classification with Dull Razor Filtering and SMOTE
Abstract
Keywords
Full Text:
Link DownloadReferences
Abuared, N., Panthakkan, A., Al-Saad, M., Amin, S. A., & Mansoor, W. (2020). Skin Cancer Classification Model Based on VGG 19 and Transfer Learning. 2020 3rd International Conference on Signal Processing and Information Security, ICSPIS 2020, 19–22. https://doi.org/10.1109/ICSPIS51252.2020.9340143
Brownlee, J. (2018). Better Deep Learning : Train Faster, Reduce Overfitting, and Make Better Predictions. In Machine Learning Mastery With Python (Vol. 1, Issue 2).
Brownlee, J. (2020). Imbalanced Classification with Python. Machine Learning Mastery, 463.
Council, C. (2016). Understanding Skin Cancer. In Cancer Council Australia. IVE Group.
Erwin. (2020). Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters. International Journal of Image, Graphics and Signal Processing, 12(2), 30–41. https://doi.org/10.5815/ijigsp.2020.02.04
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056
Fanconi, C. (2019). Skin Cancer: Malignant vs. Benign.
Faradilla, P., Rezky, S. F., & Hamdani, R. (2022). Implementasi Metode Kernel Konvolusi Dan Contrast Stretching Untuk Perbaikan Kualitas Citra Digital. 1(November), 865–875.
Gururaj, H. L., Manju, N., Nagarjun, A., Aradhya, V. N. M., & Flammini, F. (2023). DeepSkin: A Deep Learning Approach for Skin Cancer Classification. IEEE Access, 11, 50205–50214. https://doi.org/10.1109/ACCESS.2023.3274848
Ha, Q., Liu, B., & Liu, F. (2020). Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge. 1–6. http://arxiv.org/abs/2010.05351
Hendaria, M. P., Maliawan, S., Pusat, U., Denpasar, S., & Skuamosa, K. S. (2013). Kanker kulit. Kanker Kulit, 1–17.
Kamas, M. E., & Akkoca, B. S. (2021). Effects of objects and image quality on melanoma classification using deep neural networks. 67(November 2020), 1–9. https://doi.org/10.1016/j.bspc.2021.102530
Lee, T., Ng, V., Gallagher, R., Coldman, A., & McLean, D. (1997). Dullrazor®: A software approach to hair removal from images. Computers in Biology and Medicine, 27(6), 533–543. https://doi.org/10.1016/S0010-4825(97)00020-6
Luqman Hakim, Sari, Z., & Handhajani, H. (2021). Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 379–385. https://doi.org/10.29207/resti.v5i2.3001
Mahmud, K. H., Adiwijaya, & Al Faraby, S. (2019). Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network. E-Proceeding of Engineering, 6(1), 2127–2136.
Mehra, A., Bhati, A., Kumar, A., & Malhotra, R. (2021). Skin Cancer Classification Through Transfer Learning Using ResNet-50 BT - Emerging Technologies in Data Mining and Information Security (A. E. Hassanien, S. Bhattacharyya, S. Chakrabati, A. Bhattacharya, & S. Dutta (eds.); pp. 55–62). Springer Nature Singapore.
Mohammed, A. J. (2020). Improving Classification Performance for a Novel Imbalanced Medical Dataset using SMOTE Method. International Journal of Advanced Trends in Computer Science and Engineering, 9(3), 3161–3172. https://doi.org/10.30534/ijatcse/2020/104932020
Mohapatra, S., Abhishek, N. V. S., Bardhan, D., Ghosh, A. A., & Mohanty, S. (2021). Comparison of MobileNet and ResNet CNN Architectures in the CNN-Based Skin Cancer Classifier Model. Machine Learning for Healthcare Applications, 169–186. https://doi.org/10.1002/9781119792611.ch11
Munthe, T. L. D. (2018). Klasifikasi Citra Kanker Kulit Berdasarkan Tingkat Keganasan Kanker pada Melanosit Menggunakan Deep Convolutional Neural Network (DCNN). Repositori Institusi Universitas Sumatera Utara, 44–48.
Mustafa, Y. F., Ridho, F., & Mariyah, S. (2022). Study of Handwriting Recognition Implementation in Data Entry of Survei Angkatan Kerja Nasional (SAKERNAS) using CNN. Proceedings of The International Conference on Data Science and Official Statistics, 2021(1), 53–65. https://doi.org/10.34123/icdsos.v2021i1.32
Radha, N., & Tech, M. (2012). Comparison of contrast stretching methods of image enhancement techniques for acute leukemia images. Int. J. Eng. Res. Technol, 1(6), 1–9.
Rajput, G., Agrawal, S., Raut, G., & Vishvakarma, S. K. (2022). An accurate and noninvasive skin cancer screening based on imaging technique. International Journal of Imaging Systems and Technology, 32(1), 354–368. https://doi.org/https://doi.org/10.1002/ima.22616
Sa’idah, S., Putu, I., Nugraha Suparta, Y., & Suhartono, E. (2022). Modification of Convolutional Neural Network GoogLeNet Architecture with Dull Razor Filtering for Classifying Skin Cancer. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi |, 11(2), 148–153.
Wijaya, A. E., Swastika, W., & Kelana, O. H. (2021). Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray. Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 10–15. https://doi.org/10.33479/sb.v2i1.125
Wilvestra, S., Lestari, S., & Asri, E. (2018). Retrospective Study of Skin Cancer at The Dermatology and Venerology clinic Dr. M. Djamil Padang 2015-2017. Jurnal Kesehatan Andalas, 7(Supplement 3), 47–49.
Yohannes, R., & Al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133–144. https://doi.org/10.35957/algoritme.v2i2.2363
DOI: http://dx.doi.org/10.35671/telematika.v18i1.3048
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .