CNN-Based for Skin Cancer Classification with Dull Razor Filtering and SMOTE

Widhia Oktoeberza KZ, Wahyu Dwi Prasetio, Adam Idham Ramadhan, Adde Nanda C. Putra, Firsti Eliora, Afdhal Kurniawan Mainil, Agus Susanto

Abstract


Skin cancer is usually diagnosed by dermatologists through biopsy, which can be a time-consuming process due to limited resources. Early detection of skin cancer can increase the survival rate to over 99%, but if it's detected late, the rate drops to around 14%. This finding highlights the need for a rapid and accurate computing system for early cancer detection, which can prevent severe consequences. The purpose of this study is to classify skin cancer images into benign and malignant classes based on their nature. To facilitate the classification of CNN-based skin cancer, this research employs dull razor filtering. Additionally, the SMOTE method handles the unbalanced dataset. The classification results indicate that the proposed approach has an accuracy of 88.54%, a precision of 88%, and a sensitivity of 88%. These findings suggest that CNN-based methods can aid dermatologists in the diagnosis of skin cancer.

Keywords


CNN; Dull Razor Filtering; Early Detection; Skin Cancer; SMOTE

Full Text:

Link Download

References


Abuared, N., Panthakkan, A., Al-Saad, M., Amin, S. A., & Mansoor, W. (2020). Skin Cancer Classification Model Based on VGG 19 and Transfer Learning. 2020 3rd International Conference on Signal Processing and Information Security, ICSPIS 2020, 19–22. https://doi.org/10.1109/ICSPIS51252.2020.9340143

Brownlee, J. (2018). Better Deep Learning : Train Faster, Reduce Overfitting, and Make Better Predictions. In Machine Learning Mastery With Python (Vol. 1, Issue 2).

Brownlee, J. (2020). Imbalanced Classification with Python. Machine Learning Mastery, 463.

Council, C. (2016). Understanding Skin Cancer. In Cancer Council Australia. IVE Group.

Erwin. (2020). Improving Retinal Image Quality Using the Contrast Stretching, Histogram Equalization, and CLAHE Methods with Median Filters. International Journal of Image, Graphics and Signal Processing, 12(2), 30–41. https://doi.org/10.5815/ijigsp.2020.02.04

Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M., Blau, H. M., & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542(7639), 115–118. https://doi.org/10.1038/nature21056

Fanconi, C. (2019). Skin Cancer: Malignant vs. Benign.

Faradilla, P., Rezky, S. F., & Hamdani, R. (2022). Implementasi Metode Kernel Konvolusi Dan Contrast Stretching Untuk Perbaikan Kualitas Citra Digital. 1(November), 865–875.

Gururaj, H. L., Manju, N., Nagarjun, A., Aradhya, V. N. M., & Flammini, F. (2023). DeepSkin: A Deep Learning Approach for Skin Cancer Classification. IEEE Access, 11, 50205–50214. https://doi.org/10.1109/ACCESS.2023.3274848

Ha, Q., Liu, B., & Liu, F. (2020). Identifying Melanoma Images using EfficientNet Ensemble: Winning Solution to the SIIM-ISIC Melanoma Classification Challenge. 1–6. http://arxiv.org/abs/2010.05351

Hendaria, M. P., Maliawan, S., Pusat, U., Denpasar, S., & Skuamosa, K. S. (2013). Kanker kulit. Kanker Kulit, 1–17.

Kamas, M. E., & Akkoca, B. S. (2021). Effects of objects and image quality on melanoma classification using deep neural networks. 67(November 2020), 1–9. https://doi.org/10.1016/j.bspc.2021.102530

Lee, T., Ng, V., Gallagher, R., Coldman, A., & McLean, D. (1997). Dullrazor®: A software approach to hair removal from images. Computers in Biology and Medicine, 27(6), 533–543. https://doi.org/10.1016/S0010-4825(97)00020-6

Luqman Hakim, Sari, Z., & Handhajani, H. (2021). Klasifikasi Citra Pigmen Kanker Kulit Menggunakan Convolutional Neural Network. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 5(2), 379–385. https://doi.org/10.29207/resti.v5i2.3001

Mahmud, K. H., Adiwijaya, & Al Faraby, S. (2019). Klasifikasi Citra Multi-Kelas Menggunakan Convolutional Neural Network. E-Proceeding of Engineering, 6(1), 2127–2136.

Mehra, A., Bhati, A., Kumar, A., & Malhotra, R. (2021). Skin Cancer Classification Through Transfer Learning Using ResNet-50 BT - Emerging Technologies in Data Mining and Information Security (A. E. Hassanien, S. Bhattacharyya, S. Chakrabati, A. Bhattacharya, & S. Dutta (eds.); pp. 55–62). Springer Nature Singapore.

Mohammed, A. J. (2020). Improving Classification Performance for a Novel Imbalanced Medical Dataset using SMOTE Method. International Journal of Advanced Trends in Computer Science and Engineering, 9(3), 3161–3172. https://doi.org/10.30534/ijatcse/2020/104932020

Mohapatra, S., Abhishek, N. V. S., Bardhan, D., Ghosh, A. A., & Mohanty, S. (2021). Comparison of MobileNet and ResNet CNN Architectures in the CNN-Based Skin Cancer Classifier Model. Machine Learning for Healthcare Applications, 169–186. https://doi.org/10.1002/9781119792611.ch11

Munthe, T. L. D. (2018). Klasifikasi Citra Kanker Kulit Berdasarkan Tingkat Keganasan Kanker pada Melanosit Menggunakan Deep Convolutional Neural Network (DCNN). Repositori Institusi Universitas Sumatera Utara, 44–48.

Mustafa, Y. F., Ridho, F., & Mariyah, S. (2022). Study of Handwriting Recognition Implementation in Data Entry of Survei Angkatan Kerja Nasional (SAKERNAS) using CNN. Proceedings of The International Conference on Data Science and Official Statistics, 2021(1), 53–65. https://doi.org/10.34123/icdsos.v2021i1.32

Radha, N., & Tech, M. (2012). Comparison of contrast stretching methods of image enhancement techniques for acute leukemia images. Int. J. Eng. Res. Technol, 1(6), 1–9.

Rajput, G., Agrawal, S., Raut, G., & Vishvakarma, S. K. (2022). An accurate and noninvasive skin cancer screening based on imaging technique. International Journal of Imaging Systems and Technology, 32(1), 354–368. https://doi.org/https://doi.org/10.1002/ima.22616

Sa’idah, S., Putu, I., Nugraha Suparta, Y., & Suhartono, E. (2022). Modification of Convolutional Neural Network GoogLeNet Architecture with Dull Razor Filtering for Classifying Skin Cancer. Jurnal Nasional Teknik Elektro Dan Teknologi Informasi |, 11(2), 148–153.

Wijaya, A. E., Swastika, W., & Kelana, O. H. (2021). Implementasi Transfer Learning Pada Convolutional Neural Network Untuk Diagnosis Covid-19 Dan Pneumonia Pada Citra X-Ray. Sainsbertek Jurnal Ilmiah Sains & Teknologi, 2(1), 10–15. https://doi.org/10.33479/sb.v2i1.125

Wilvestra, S., Lestari, S., & Asri, E. (2018). Retrospective Study of Skin Cancer at The Dermatology and Venerology clinic Dr. M. Djamil Padang 2015-2017. Jurnal Kesehatan Andalas, 7(Supplement 3), 47–49.

Yohannes, R., & Al Rivan, M. E. (2022). Klasifikasi Jenis Kanker Kulit Menggunakan CNN-SVM. Jurnal Algoritme, 2(2), 133–144. https://doi.org/10.35957/algoritme.v2i2.2363




DOI: http://dx.doi.org/10.35671/telematika.v18i1.3048

Refbacks

  • There are currently no refbacks.


 



Indexed by:

 

Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .