Comparative Analysis of Green Snake Identification using Head Structure and Body Patterns with Vision Transformer
Abstract
Snakebites remain a major global health concern, with over 4.5 million cases annually, primarily affecting rural populations in tropical regions. Accurate snake species identification is critical for proper treatment, yet challenges persist due to morphological similarities, particularly among visually similar green snake species. We test five Vision Transformer (ViT)-based models to see how well they can classify snakes based on pictures of their heads and bodies. The models are ViT-B16, DeiT, PoolFormer, Swin-T, and CaiT. Results indicate that head structure classification achieved higher accuracy than body pattern classification due to more distinct morphological features. CaiT outperformed other models, achieving 87% accuracy, particularly when trained on RGB images. These findings highlight the importance of model selection and dataset characteristics in improving snake species classification, especially for species with high visual similarity.
Keywords
Full Text:
Link DownloadReferences
Afroz, A., Siddiquea, B. N., Shetty, A. N., Jackson, T. N. W., & Watt, A. D. (2023). Assessing knowledge and awareness regarding snakebite and management of snakebite envenoming in healthcare workers and the general population: A systematic review and meta-analysis. PLOS Neglected Tropical Diseases, 17(2), e0011048. https://doi.org/10.1371/journal.pntd.0011048
Alexey Dosovitskiy, Lucas Beyer, Dirk Weissenborn, Alexander Kolesnikov, Xiaohua Zhai, & Thomas Unterthiner. (n.d.). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
Bhatta, A., Mery, D., Wu, H., Annan, J., King, M. C., & Bowyer, K. W. (2023). What’s color got to do with it? Face recognition in grayscale. http://arxiv.org/abs/2309.05180
Bloch, L., & Friedrich, C. M. (2021). EfficientNets and Vision Transformers for Snake Species Identification Using Image and Location Information. https://www.fh-dortmund.de/personen/Christoph-Friedrich/index.php
Bolon, I., Durso, A. M., Botero Mesa, S., Ray, N., Alcoba, G., Chappuis, F., & Ruiz de Castañeda, R. (2020). Identifying the snake: First scoping review on practices of communities and healthcare providers confronted with snakebite across the world. PLOS ONE, 15(3), e0229989. https://doi.org/10.1371/journal.pone.0229989
Bolon, I., Picek, L., Durso, A. M., Alcoba, G., Chappuis, F., & Ruiz de Castañeda, R. (2022). An artificial intelligence model to identify snakes from across the world: Opportunities and challenges for global health and herpetology. PLOS Neglected Tropical Diseases, 16(8), e0010647. https://doi.org/10.1371/journal.pntd.0010647
Chamidullin, R., Šulc, M., Matas, J., & Picek, L. (2021). A Deep Learning Method for Visual Recognition of Snake Species. http://ceur-ws.org
de Solan, T., Renoult, J. P., Geniez, P., David, P., & Crochet, P.-A. (2020). Looking for Mimicry in a Snake Assemblage Using Deep Learning. The American Naturalist, 196(1), 74–86. https://doi.org/10.1086/708763
Dümen, S., Kavalcı Yılmaz, E., Adem, K., & Avaroglu, E. (2024). Performance of vision transformer and swin transformer models for lemon quality classification in fruit juice factories. European Food Research and Technology, 250(9), 2291–2302. https://doi.org/10.1007/s00217-024-04537-5
Durso, A. M., Moorthy, G. K., Mohanty, S. P., Bolon, I., Salathé, M., & Ruiz de Castañeda, R. (2021). Supervised Learning Computer Vision Benchmark for Snake Species Identification From Photographs: Implications for Herpetology and Global Health. Frontiers in Artificial Intelligence, 4. https://doi.org/10.3389/frai.2021.582110
Eva Putriany, & Dhani Ariatmanto. (2024). Literatur Reviu Sistematis: Identifikasi Jenis Ular Berbasis Computer Vision. JNANALOKA, 43. https://doi.org/10.36802/jnanaloka.2024.v5-no01-43-50
Knudsen, C., Jürgensen, J. A., Føns, S., Haack, A. M., Friis, R. U. W., Dam, S. H., Bush, S. P., White, J., & Laustsen, A. H. (2021). Snakebite Envenoming Diagnosis and Diagnostics. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.661457
Matsuzaka, Y., & Yashiro, R. (2023). AI-Based Computer Vision Techniques and Expert Systems. AI, 4(1), 289–302. https://doi.org/10.3390/ai4010013
Pangestu, A., Purnama, B., & Risnandar, R. (2024). Vision Transformer untuk Klasifikasi Kematangan Pisang. Jurnal Teknologi Informasi Dan Ilmu Komputer, 11(1), 75–84. https://doi.org/10.25126/jtiik.20241117389
Rajabizadeh, M., & Rezghi, M. (2021). A comparative study on image-based snake identification using machine learning. Scientific Reports, 11(1), 19142. https://doi.org/10.1038/s41598-021-96031-1
Ralph, R., Faiz, M. A., Sharma, S. K., Ribeiro, I., & Chappuis, F. (2022). Managing snakebite. BMJ, e057926. https://doi.org/10.1136/bmj-2020-057926
Rusli, N., & Rini, C. P. (2020). Ular di Sekitar Kita: Pulau Jawa. Indonesia Herpetofauna Foundation.
Sri Lanka Medical Association. (2022, April 5). Identification of Snakes.
Tangtermpong, A., Pinyopornpanish, K., Vasaruchapong, T., Chenthanakij, B., & Pinyopornpanish, K. (2021). The Treatment of Unidentified Hematotoxic Snake Envenomation and the Clinical Manifestations of a Protobothrops kelomohy Bite. Wilderness & Environmental Medicine, 32(1), 83–87. https://doi.org/10.1016/j.wem.2020.11.001
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., & Jégou, H. (2020). Training data-efficient image transformers & distillation through attention. http://arxiv.org/abs/2012.12877
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., & Jégou, H. (2021). Going deeper with Image Transformers. http://arxiv.org/abs/2103.17239
Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou, Xinchao Wang, Jiashi Feng, & Shuicheng Yan. (2022). MetaFormer Is Actually What You Need for Vision. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),.
Wolfe, A. K., Fleming, P. A., & Bateman, P. W. (2020). What snake is that? Common Australian snake species are frequently misidentified or unidentified. Human Dimensions of Wildlife, 25(6), 517–530. https://doi.org/10.1080/10871209.2020.1769778
World Health Organization. (2023, September 12). Snakebite Envenoming. Https://Www.Who.Int/News-Room/Fact-Sheets/Detail/Snakebite-Envenoming.
Xie, J., Zhang, J., Sun, J., Ma, Z., Qin, L., Li, G., Zhou, H., & Zhan, Y. (2022). A Transformer-Based Approach Combining Deep Learning Network and Spatial-Temporal Information for Raw EEG Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 30, 2126–2136. https://doi.org/10.1109/TNSRE.2022.3194600
DOI: http://dx.doi.org/10.35671/telematika.v18i1.2992
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .




