Comparison of Linear Regression, ARIMA, Simple Exponential Smoothing, Hybrid ARIMA-LSTM, and EWMA in Forecasting Commodity Prices
Abstract
Keywords
Full Text:
Link DownloadReferences
Alhnaity, B., & Abbod, M. (2020). A new hybrid financial time series prediction model. Engineering Applications of Artificial Intelligence, 95. https://doi.org/10.1016/j.engappai.2020.103873
Barhmi, S., Elfatni, O., & Belhaj, I. (2020). Forecasting of wind speed using multiple linear regression and artificial neural networks. Energy Systems, 11(4), 935–946. https://doi.org/10.1007/s12667-019-00338-y
Ben Ameur, H., Boubaker, S., Ftiti, Z., Louhichi, W., & Tissaoui, K. (2023). Forecasting commodity prices: empirical evidence using deep learning tools. Annals of Operations Research. https://doi.org/10.1007/s10479-022-05076-6
Brignoli, P. L., Varacca, A., Gardebroek, C., & Sckokai, P. (2024). Machine learning to predict grains futures prices. Agricultural Economics (United Kingdom), 55(3), 479–497. https://doi.org/10.1111/agec.12828
Chhajer, P., Shah, M., & Kshirsagar, A. (2022). The applications of artificial neural networks, support vector machines, and long–short term memory for stock market prediction. Decision Analytics Journal, 2. https://doi.org/10.1016/j.dajour.2021.100015
Dave, E., Leonardo, A., Jeanice, M., & Hanafiah, N. (2021). Forecasting Indonesia Exports using a Hybrid Model ARIMA-LSTM. Procedia Computer Science, 179, 480–487. https://doi.org/10.1016/j.procs.2021.01.031
Dharavath, R., & Khosla, E. (2019). Seasonal ARIMA to forecast fruits and vegetable agricultural prices. Proceedings - 2019 IEEE International Symposium on Smart Electronic Systems, ISES 2019, 47–52. https://doi.org/10.1109/iSES47678.2019.00023
Guleryuz, D. (2021). Forecasting outbreak of COVID-19 in Turkey; Comparison of Box–Jenkins, Brown’s exponential smoothing and long short-term memory models. Process Safety and Environmental Protection, 149, 927–935. https://doi.org/10.1016/j.psep.2021.03.032
Hakim, A. Q. A., Rahman, M. A. A., & Radzi, S. F. M. (2024). Ensemble ARIMA-LSTM Algorithm in Predicting Agriculture Commodities Market Price for Farmer’s Education. 2024 7th International Conference on Information Technologies in Engineering Education, Inforino 2024 - Proceedings. https://doi.org/10.1109/Inforino60363.2024.10551892
Kahraman, E., & Akay, O. (2023). Comparison of exponential smoothing methods in forecasting global prices of main metals. Mineral Economics, 36(3), 427–435. https://doi.org/10.1007/s13563-022-00354-y
Li, H., Xu, Q., He, Y., Fan, X., & Li, S. (2020). Modeling and predicting reservoir landslide displacement with deep belief network and EWMA control charts: a case study in Three Gorges Reservoir. Landslides, 17(3), 693–707. https://doi.org/10.1007/s10346-019-01312-6
Ma, Q. (2020). Comparison of ARIMA, ANN and LSTM for Stock Price Prediction. E3S Web of Conferences, 218. https://doi.org/10.1051/e3sconf/202021801026
Mohsin, M., & Jamaani, F. (2023). A novel deep-learning technique for forecasting oil price volatility using historical prices of five precious metals in context of green financing – A comparison of deep learning, machine learning, and statistical models. Resources Policy, 86. https://doi.org/10.1016/j.resourpol.2023.104216
Ray, S., Lama, A., Mishra, P., Biswas, T., Sankar Das, S., & Gurung, B. (2023). An ARIMA-LSTM model for predicting volatile agricultural price series with random forest technique [Formula presented]. Applied Soft Computing, 149. https://doi.org/10.1016/j.asoc.2023.110939
Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M. (2020). Financial time series forecasting with deep learning: A systematic literature review: 2005–2019. Applied Soft Computing Journal, 90. https://doi.org/10.1016/j.asoc.2020.106181
Si, Y., Nadarajah, S., Zhang, Z., & Xu, C. (2024). Modeling opening price spread of Shanghai Composite Index based on ARIMA-GRU/LSTM hybrid model. PLoS ONE, 19(3 March). https://doi.org/10.1371/journal.pone.0299164
Vancsura, L., Tatay, T., & Bareith, T. (2023). Evaluating the Effectiveness of Modern Forecasting Models in Predicting Commodity Futures Prices in Volatile Economic Times. Risks, 11(2). https://doi.org/10.3390/risks11020027
Xidonas, P., Tsionas, M., & Zopounidis, C. (2020). On mutual funds-of-ETFs asset allocation with rebalancing: sample covariance versus EWMA and GARCH. Annals of Operations Research, 284(1), 469–482. https://doi.org/10.1007/s10479-018-3056-z
Yavasani, R., Wang, F., Hills, M., School, H., & Advisor, U. #. (2024). Comparative Analysis of LSTM, GRU, and ARIMA Models for Stock Market Price Prediction. www.JSR.org/hs
Yousefzadeh, M., Hosseini, S. A., & Farnaghi, M. (2021). Spatiotemporally explicit earthquake prediction using deep neural network. Soil Dynamics and Earthquake Engineering, 144. https://doi.org/10.1016/j.soildyn.2021.106663
Zhang, D., Chen, S., Liwen, L., & Xia, Q. (2020). Forecasting Agricultural Commodity Prices Using Model Selection Framework with Time Series Features and Forecast Horizons. IEEE Access, 8, 28197–28209. https://doi.org/10.1109/ACCESS.2020.2971591
DOI: http://dx.doi.org/10.35671/telematika.v17i2.2932
Refbacks
- » —
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .