CNN Pruning for Edge Computing-Based Corn Disease Detection with a Novel NG-Mean Accuracy Loss Optimization
Abstract
Keywords
Full Text:
Link DownloadReferences
Ahia, O., Kreutzer, J., & Hooker, S. (2021). The Low-Resource Double Bind: An Empirical Study of Pruning for Low-Resource Machine Translation (arXiv:2110.03036). arXiv. https://doi.org/10.48550/arXiv.2110.03036
Al-Adhaileh, M. H., Verma, A., Aldhyani, T. H., & Koundal, D. (2023). Potato blight detection using fine-tuned CNN architecture. Mathematics, 11(6), 1516. https://doi.org/10.3390/math11061516
Anim-Ayeko, A. O., Schillaci, C., & Lipani, A. (2023). Automatic blight disease detection in potato (Solanum tuberosum L.) and tomato (Solanum lycopersicum, L. 1753) plants using deep learning. Smart Agricultural Technology, 4, 100178. https://doi.org/10.1016/j.atech.2023.100178
Ashwini, C., & Sellam, V. (2023). Analyzing The Prediction Accuracy Of Corn Leaf Diseases Using A Pre-Trained Network Model. 2023 International Conference on Advancement in Computation & Computer Technologies (InCACCT), 87–91. https://doi.org/10.1109/InCACCT57535.2023.10141840
Choudhary, K., Nersisyan, N., Lin, E., Chandrasekaran, S., Mayani, R., Pottier, L., Murillo, A. P., Virdone, N. K., Kee, K., & Deelman, E. (2022). Application of Edge-to-Cloud Methods Toward Deep Learning. 2022 IEEE 18th International Conference on E-Science (e-Science), 415–416. https://doi.org/10.1109/eScience55777.2022.00065
Cui, L., Su, X., Ming, Z., Chen, Z., Yang, S., Zhou, Y., & Xiao, W. (2022). CREAT: Blockchain-Assisted Compression Algorithm of Federated Learning for Content Caching in Edge Computing. IEEE Internet of Things Journal, 9(16), 14151–14161. https://doi.org/10.1109/JIOT.2020.3014370
Dagwale, S. S., & Adakane, P. (2023). Prediction of Leaf Species & Disease Using Ai for Various Plants. Int. J. Multidiscip. Res, 5, 23034169. https://doi.org/10.36948/ijfmr.2023.v05i03.4169.
Degani, O., Movshowitz, D., Dor, S., Meerson, A., & Rabinovitz, O. (2018). Evaluating Azoxystrobin Seed Coating Against Maize Late Wilt Disease Using a Sensitive qPCR-Based Method. Plant Disease, 103. https://doi.org/10.1094/PDIS-05-18-0759-RE
Dong, X., Li, B., & Song, Y. (2023). An Optimization Method For Pruning Rates of Each Layer in CNN Based on the GA-SMSM. https://doi.org/10.21203/rs.3.rs-2738666/v1
Escobar, L., Gallardo, P., González-Anaya, J., González, J. L., Montúfar, G., & Morales, A. H. (2022). Enumeration of max-pooling responses with generalized permutohedra. https://doi.org/10.48550/ARXIV.2209.14978
Fan, W., Chu, F., Wang, H., & Yu, P. S. (2002). Pruning and dynamic scheduling of cost-sensitive ensembles. AAAI/IAAI, 146–151. https://cdn.aaai.org/AAAI/2002/AAAI02-023.pdf
Fernando, K. R. M., & Tsokos, C. P. (2022). Dynamically Weighted Balanced Loss: Class Imbalanced Learning and Confidence Calibration of Deep Neural Networks. IEEE Transactions on Neural Networks and Learning Systems, 33(7), 2940–2951. https://doi.org/10.1109/TNNLS.2020.3047335
Gajjar, R., Gajjar, N., Thakor, V. J., Patel, N. P., & Ruparelia, S. (2022). Real-time detection and identification of plant leaf diseases using convolutional neural networks on an embedded platform. The Visual Computer, 38(8), 2923–2938. https://doi.org/10.1007/s00371-021-02164-9
Gangopadhyay, B., Dasgupta, P., & Dey, S. (2023). Safety Aware Neural Pruning for Deep Reinforcement Learning (Student Abstract). Proceedings of the AAAI Conference on Artificial Intelligence, 37(13), 16212–16213. https://doi.org/10.1609/aaai.v37i13.26966
Jia, Y., Liu, B., Dou, W., Xu, X., Zhou, X., Qi, L., & Yan, Z. (2022). CroApp: A CNN-based resource optimization approach in edge computing environment. IEEE Transactions on Industrial Informatics, 18(9), 6300–6307. https://doi.org/10.1109/TII.2022.3154473.
Jiang, H., Zhang, L. L., Li, Y., Wu, Y., Cao, S., Cao, T., Yang, Y., Li, J., Yang, M., & Qiu, L. (2023). Accurate and Structured Pruning for Efficient Automatic Speech Recognition. https://doi.org/10.48550/ARXIV.2305.19549
Joardar, B. K., Doppa, J. R., Li, H., Chakrabarty, K., & Pande, P. P. (2023). ReaLPrune: ReRAM Crossbar-Aware Lottery Ticket Pruning for CNNs. IEEE Transactions on Emerging Topics in Computing, 11(2), 303–317. https://doi.org/10.1109/TETC.2022.3223630
Kurtic, E., Campos, D., Nguyen, T., Frantar, E., Kurtz, M., Fineran, B., Goin, M., & Alistarh, D. (2022). The Optimal BERT Surgeon: Scalable and Accurate Second-Order Pruning for Large Language Models. https://doi.org/10.48550/ARXIV.2203.07259
Lei, F., Liu, X., Dai, Q., & Ling, B. W.-K. (2020). Shallow convolutional neural network for image classification. SN Applied Sciences, 2(1), 97. https://doi.org/10.1007/s42452-019-1903-4
Liu, W., Mo, J., & Zhong, F. (2023). Class Imbalanced Medical Image Classification Based on Semi-Supervised Federated Learning. Applied Sciences, 13(4), Article 4. https://doi.org/10.3390/app13042109
Luo, J.-H., Zhang, H., Zhou, H.-Y., Xie, C.-W., Wu, J., & Lin, W. (2018). ThiNet: Pruning CNN filters for a thinner net. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(10), 2525–2538. https://doi.org/10.1109/TPAMI.2018.2858232.
Moon, S., Byun, Y., Park, J., Lee, S., & Lee, Y. (2019). Memory-reduced network stacking for edge-level CNN architecture with structured weight pruning. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 9(4), 735–746. https://doi.org/10.1109/JETCAS.2019.2952137.
Nagarajan, P., Warnell, G., & Stone, P. (2019). Deterministic Implementations for Reproducibility in Deep Reinforcement Learning (arXiv:1809.05676). arXiv. http://arxiv.org/abs/1809.05676
Pamungkas, W. G., Wardhana, M. I. P., Sari, Z., & Azhar, Y. (2023). Leaf Image Identification: CNN with EfficientNet-B0 and ResNet-50 Used to Classified Corn Disease. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 7(2), 326–333. https://doi.org/10.29207/resti.v7i2.4736.
Pandey, G., & Dukkipati, A. (2017). Unsupervised feature learning with discriminative encoder. 2017 IEEE International Conference on Data Mining (ICDM), 367–376. https://doi.org/10.1109/ICDM.2017.46.
Pane, S. F., Ramdan, J., Putrada, A. G., Fauzan, M. N., Awangga, R. M., & Alamsyah, N. (2022). A Hybrid CNN-LSTM Model With Word-Emoji Embedding For Improving The Twitter Sentiment Analysis on Indonesia’s PPKM Policy. 2022 6th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), 51–56. https://doi.org/10.1109/ICITISEE57756.2022.10057720
Prabowo, S., Putrada, A. G., Oktaviani, I. D., & Abdurohman, M. (2023). Camera-Based Smart Lighting System that complies with Indonesia’s Personal Data Protection Act. 2023 International Conference on Advancement in Data Science, E-Learning and Information System (ICADEIS), 1–6. https://doi.org/10.1109/ICADEIS58666.2023.10271086.
Putrada, A. G., Abdurohman, M., Perdana, D., & Nuha, H. H. (2023a). EdgeSL: Edge-Computing Architecture on Smart Lighting Control With Distilled KNN for Optimum Processing Time. IEEE Access, 11, 64697–64712. https://doi.org/10.1109/ACCESS.2023.3288425
Putrada, A. G., Abdurohman, M., Perdana, D., & Nuha, H. H. (2023b). Shuffle Split-Edited Nearest Neighbor: A Novel Intelligent Control Model Compression for Smart Lighting in Edge Computing Environment. In Information Systems for Intelligent Systems: Proceedings of ISBM 2022 (pp. 219–227). Springer. https://doi.org/10.1007/978-981-19-7447-2_20.
Putrada, A. G., Abdurohman, M., Perdana, D., & Nuha, H. H. (2024). Q8KNN: A Novel 8-Bit KNN Quantization Method for Edge Computing in Smart Lighting Systems with NodeMCU. In K. Arai (Ed.), Intelligent Systems and Applications (Vol. 824, pp. 598–615). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-47715-7_41
Putrada, A. G., Alamsyah, N., Pane, S. F., Fauzan, M. N., & Perdana, D. (2023). Knowledge Distillation for a Lightweight Deep Learning-Based Indoor Positioning System on Edge Environments. 2023 International Seminar on Intelligent Technology and Its Applications (ISITIA), 370–375. https://doi.org/10.1109/ISITIA59021.2023.10220996
Qin, L., & Sun, J. (2023). Model Compression for Data Compression: Neural Network Based Lossless Compressor Made Practical. 2023 Data Compression Conference (DCC), 52–61. https://doi.org/10.1109/DCC55655.2023.00013
Sharma, S., & Vardhan, M. (2023). Hyperparameter Tuned Hybrid Convolutional Neural Network (H-CNN) for Accurate Plant Disease Classification. 2023 International Conference on Communication, Circuits, and Systems (IC3S), 1–6. https://doi.org/10.1109/IC3S57698.2023.10169257
Shrestha, U., Peter, D. T. J., Manandhar, S., Rajbanshi, S., Padal, S., & Student, U. (2020). System Design for Identification of Plant Leaf Diseases using Deep Learning for Web and Mobile Platform. https://www.semanticscholar.org/paper/System-Design-for-Identification-of-Plant-Leaf-Deep-Shrestha-Peter/97948b361657578fe0619fa33cb36e4d2efad442
Siahroudi, S. K., & Kudenko, D. (2023). An effective single-model learning for multi-label data. Expert Systems with Applications, 232, 120887. https://doi.org/10.1016/j.eswa.2023.120887
Tang, J., Liu, S., Liu, L., Yu, B., & Shi, W. (2020). LoPECS: A Low-Power Edge Computing System for Real-Time Autonomous Driving Services. IEEE Access, 8, 30467–30479. https://doi.org/10.1109/ACCESS.2020.2970728
Thanh, T. (2021). Grid Search of Convolutional Neural Network model in the case of load forecasting. Archives of Electrical Engineering, 70. https://doi.org/10.24425/aee.2021.136050
Velmurugan, S., Moorthy, R. S., & Angel, S. (2023). Computer Vision based Plant Disease Detection using Machine Learning Technique. International Journal, 11(7). https://www.academia.edu/download/104134478/ijeter021172023.pdf
Vocaturo, E., Zumpano, E., & Veltri, P. (2018). Image pre-processing in computer vision systems for melanoma detection. 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 2117–2124. https://doi.org/10.1109/BIBM.2018.8621507
Widianto, B., Utami, E., & Ariatmanto, D. (2023). Identifikasi Penyakit Tanaman Jagung Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. Techno. Com, 22(3), 599–608. https://doi.org/10.33633/tc.v22i3.8425.
Ye, Y., Li, S., Liu, F., Tang, Y., & Hu, W. (2020). EdgeFed: Optimized federated learning based on edge computing. IEEE Access, 8, 209191–209198. https://doi.org/10.1109/ACCESS.2020.3038287.
Yucky, E. D. D., Putrada, A. G., & Abdurohman, M. (2021). IoT drone camera for a paddy crop health detector with RGB comparison. 2021 9th International Conference on Information and Communication Technology (ICoICT), 155–159. https://doi.org/10.1109/ICoICT52021.2021.9527421.
Zhan, T. (2022). Hyper-Parameter Tuning in Deep Neural Network Learning. Artificial Intelligence and Applications, 95–101. https://doi.org/10.5121/csit.2022.121809
DOI: http://dx.doi.org/10.35671/telematika.v17i2.2899
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .