Deep Learning for Histopathological Image Analysis: A Convolutional Neural Network Approach to Colon Cancer Classification

Sarifah Agustiani, Yan Rianto


Colon cancer is a type of cancer that attacks the last part of the human digestive tract. Factors such as an unhealthy diet, low fiber consumption, and high animal protein and fat intake can increase the risk of developing this disease. Diagnosis of colon cancer requires sophisticated diagnostic procedures such as CT scan, MRI, PET scan, ultrasound, or biopsy, which are often time-consuming and require particular expertise. This study aims to classify colon cancer based on histopathological images using a dataset of 10,000 images. This data is divided into 7,950 images for training, 2,000 for testing, and 50 for validation, aiming to achieve effective generalization. The Convolutional Neural Network (CNN) method was applied in this research with a relatively shallow architecture consisting of 4 convolution layers, 2 fully connected layers, and 1 output layer. Research results were evaluated by looking at the accuracy value of 99.55%, precision value of 99.49%, recall of 99.59%, prediction experiments on several images, and loss and accuracy graphs to detect signs of overfitting. However, this research has limitations in determining hyperparameters and layer depth, which was only tested from 1 to 5 convolution layers. Therefore, there are still opportunities for further development, such as applying unique feature extraction before the classification process.


Colon Cancer; Histopathology Image; CNN

Full Text:

PDF (Indonesian)


Ahmed, Z., Mohamed, K., Zeeshan, S., & Dong, X. (2020). Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database, 2020, baaa010.

Anand, V., Gupta, S., Koundal, D., & Singh, K. (2023). Fusion of U-Net and CNN model for segmentation and classification of skin lesion from dermoscopy images. Expert Systems with Applications, 213, 119230.

Bhattacharya, A., Saha, B., Chattopadhyay, S., & Sarkar, R. (2023). Deep feature selection using adaptive β-Hill Climbing aided whale optimization algorithm for lung and colon cancer detection. Biomedical Signal Processing and Control, 83, 104692.

Cancer-Symptoms and Causes-Mayo Clinic. (2021). Mayo Foundation for Medical Education and Research (MFMER).

Candra, P. N., & Prapanca, A. (2020). Klasifikasi gambar asli dan manipulasi menggunakan Error Level Analysis ( ELA ) sebagai proses komputasi metode Convolutional Neural Network ( CNN ). Journal of Informatics and Computer Science, 02, 9–18.

Fahami, M. A., Roshanzamir, M., Izadi, N. H., Keyvani, V., & Alizadehsani, R. (2021). Detection of effective genes in colon cancer: A machine learning approach. Informatics in Medicine Unlocked, 24, 100605.

Fauzi, A. A., Kom, S., Kom, M., Budi Harto, S. E., Mm, P. I. A., Mulyanto, M. E., Dulame, I. M., Pramuditha, P., Sudipa, I. G. I., Kom, S., & others. (2023). Pemanfaatan Teknologi Informasi di Berbagai Sektor Pada Masa Society 5.0. PT. Sonpedia Publishing Indonesia.

Felix, F., Wijaya, J., Sutra, S. P., Kosasih, P. W., & Sirait, P. (2020). Implementasi Convolutional Neural Network Untuk Identifikasi Jenis Tanaman Melalui Daun. Jurnal SIFO Mikroskil, 21(1), 1–10.

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, B. F. . (2020). International Agency for Research on Cancer 2020. Global Cancer Observatory: Cancer Today., 419, 1–2.

Gao, Y., Zhang, J., Pan, J., Ying, S., Lou, B., Yang, Q., Hong, W., & Yang, G. (2023). FOF1-ATP synthase molecular motor biosensor for miRNA detection of colon cancer. Life Sciences, 319, 121527.

George, N., Shine, L., N, A., Abraham, B., & Ramachandran, S. (2024). A two-stage CNN model for the classification and severity analysis of retinal and choroidal diseases in OCT images. International Journal of Intelligent Networks, 5, 10–18.

Gerwert, K., Schörner, S., Großerueschkamp, F., Kraeft, A., Schuhmacher, D., Sternemann, C., Feder, I. S., Wisser, S., Lugnier, C., Arnold, D., Teschendorf, C., Mueller, L., Timmesfeld, N., Mosig, A., Reinacher-Schick, A., & Tannapfel, A. (2023). Fast and label-free automated detection of microsatellite status in early colon cancer using artificial intelligence integrated infrared imaging. European Journal of Cancer, 182, 122–131.

Hossain, S., Azam, S., Montaha, S., Karim, A., Chowa, S. S., Mondol, C., Zahid Hasan, M., & Jonkman, M. (2023). Automated breast tumor ultrasound image segmentation with hybrid UNet and classification using fine-tuned CNN model. Heliyon, 9(11), e21369.

Kaya, S. I., Ozcelikay, G., Mollarasouli, F., Bakirhan, N. K., & Ozkan, S. A. (2022). Recent achievements and challenges on nanomaterial based electrochemical biosensors for the detection of colon and lung cancer biomarkers. Sensors and Actuators B: Chemical, 351, 130856.

Kumar, S., & Panda, K. (2023). SDIF-CNN: Stacking deep image features using fine-tuned convolution neural network models for real-world malware detection and classification. Applied Soft Computing, 146, 110676.

Lung and Colon Cancer Histopathological Images | Kaggle. (n.d.). Retrieved March 3, 2021, from

Mulyo Harminto, & Sucipto Adi. (2023). Sistem Informasi Geografis Pemetaan LahanDesa Pecangaan Kulon Berbasis Website. Jurnal Teknik Informatika Unisnu, 2(1), 8–23.

Murugesan, M., Madonna Arieth, R., Balraj, S., & Nirmala, R. (2023). Colon cancer stage detection in colonoscopy images using YOLOv3 MSF deep learning architecture. Biomedical Signal Processing and Control, 80, 104283.

Naito, Y., Aburatani, H., Amano, T., Baba, E., Furukawa, T., Hayashida, T., Hiyama, E., Ikeda, S., Kanai, M., Kato, M., & others. (2021). Clinical practice guidance for next-generation sequencing in cancer diagnosis and treatment (edition 2.1). International Journal of Clinical Oncology, 26, 233–283.

Ningrum, M. P., & Rahayu, R. R. S. R. (2021). Determinan Kejadian Kanker Payudara pada Wanita Usia Subur (15-49 Tahun). Indonesian Journal of Public Health and Nutrition, 1(3), 362–370.

Nugroho, P. A., Fenriana, I., Arijanto, R., & Kom, M. (2020). Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia. Implementasi Deep Learning Menggunakan Convolutional Neural Network ( Cnn ) Pada Ekspresi Manusia, 2(1).

Oyelade, O. N., Ezugwu, A. E., Venter, H. S., Mirjalili, S., & Gandomi, A. H. (2022). Abnormality classification and localization using dual-branch whole-region-based CNN model with histopathological images. Computers in Biology and Medicine, 149, 105943.

Patil, S., & Shankar, H. (2023). Transforming healthcare: harnessing the power of AI in the modern era. International Journal of Multidisciplinary Sciences and Arts, 2(1), 60–70.

Puspitasari, M. R., & Waluyo, A. (2021). Aplikasi Teori Katarine Kolbaca pada Kasus Kanker Kolon Pasca Laparatomi dengan Musik. Jurnal Medika Husada, Vol 4 No.1, Hal 1-6.

Rajput, A., & Subasi, A. (2023). Chapter 10 - Automated detection of colon cancer using deep learning. In A. Subasi (Ed.), Applications of Artificial Intelligence in Medical Imaging (pp. 265–281). Academic Press.

Rambe, R. (2019). Sistem Pakar Mendiagnosa Penyakit Kanker Usus Besar pada Manusia dengan Menerapkan Metode Hybrid Case Based. Jurnal Riset Komputer, 6(6), 606–611.

Rathore, S., Hussain, M., Aksam Iftikhar, M., & Jalil, A. (2015). Novel structural descriptors for automated colon cancer detection and grading. Computer Methods and Programs in Biomedicine, 121(2), 92–108.

Singh, O., & Singh, K. K. (2023). An approach to classify lung and colon cancer of histopathology images using deep feature extraction and an ensemble method. International Journal of Information Technology, 15(8), 4149–4160.

Talukder, M. A., Islam, M. M., Uddin, M. A., Akhter, A., Hasan, K. F., & Moni, M. A. (2022). Machine learning-based lung and colon cancer detection using deep feature extraction and ensemble learning. Expert Systems with Applications, 205, 117695.

Toğaçar, M. (2021). Disease type detection in lung and colon cancer images using the complement approach of inefficient sets. Computers in Biology and Medicine, 137, 104827.

Zhang, D., Han, J., Zhao, L., & Zhao, T. (2020). From discriminant to complete: Reinforcement searching-agent learning for weakly supervised object detection. IEEE Transactions on Neural Networks and Learning Systems, 31(12), 5549–5560.

Zhang, M., Liu, L., Jin, Y., Lei, Z., Wang, Z., & Jiao, L. (2024). Tree-shaped multiobjective evolutionary CNN for hyperspectral image classification. Applied Soft Computing, 152, 111176.

Zhang, S., Lu, X., & Lu, Z. (2023). Improved CNN-based CatBoost model for license plate remote sensing image classification. Signal Processing, 213, 109196.



  • There are currently no refbacks.

Indexed by:

ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia

Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .