Optuna Based Hyperparameter Tuning for Improving the Performance Prediction Mortality and Hospital Length of Stay for Stroke Patients
Abstract
Keywords
Full Text:
Link DownloadReferences
American Heart Association. (2023). Heart Disease and Stroke Statistics - 2023. Professional.Heart.Org. https://professional.heart.org/en/science-news/heart-disease-and-stroke-statistics-2023-update
Barsasella, D., Bah, K., Mishra, P., Uddin, M., Dhar, E., Suryani, D. L., Setiadi, D., Masturoh, I., Sugiarti, I., Jonnagaddala, J., & Syed-Abdul, S. (2022). A Machine Learning Model to Predict Length of Stay and Mortality among Diabetes and Hypertension Inpatients. Medicina (Kaunas, Lithuania), 58(11). https://doi.org/10.3390/medicina58111568
Chauhan, N. S. (2022). Decision Tree Algorithm, Explained. Https://Www.Kdnuggets.Com/. https://www.kdnuggets.com/2020/01/decision-tree-algorithm-explained.html
Chen, C. H., Tanaka, K., Kotera, M., & Funatsu, K. (2020). Comparison and improvement of the predictability and interpretability with ensemble learning models in QSPR applications. Journal of Cheminformatics, 12(1), 1–16. https://doi.org/10.1186/s13321-020-0417-9
Chen, R., Zhang, S., Li, J., Guo, D., Zhang, W., Wang, X., Tian, D., Qu, Z., & Wang, X. (2023). A study on predicting the length of hospital stay for Chinese patients with ischemic stroke based on the XGBoost algorithm. BMC Medical Informatics and Decision Making, 23(1), 1–10. https://doi.org/10.1186/s12911-023-02140-4
Crissman, M. on. (2019). Optuna: An Automatic Hyperparameter Optimization Framework. Odsc.Com. https://odsc.com/blog/optuna-an-automatic-hyperparameter-optimization-framework/
Feigin, V. L., Stark, B. A., Johnson, C. O., Roth, G. A., Bisignano, C., Abady, G. G., Abbasifard, M., Abbasi-Kangevari, M., Abd-Allah, F., Abedi, V., Abualhasan, A., Abu-Rmeileh, N. M. E., Abushouk, A. I., Adebayo, O. M., Agarwal, G., Agasthi, P., Ahinkorah, B. O., Ahmad, S., Ahmadi, S., … Murray, C. J. L. (2021). Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet Neurology, 20(10), 1–26. https://doi.org/10.1016/S1474-4422(21)00252-0
Fernandez-Lozano, C., Hervella, P., Mato-Abad, V., Rodríguez-Yáñez, M., Suárez-Garaboa, S., López-Dequidt, I., Estany-Gestal, A., Sobrino, T., Campos, F., Castillo, J., Rodríguez-Yáñez, S., & Iglesias-Rey, R. (2021). Random forest-based prediction of stroke outcome. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-89434-7
Ghazwani, M., & Begum, M. Y. (2023). Computational intelligence modeling of hyoscine drug solubility and solvent density in supercritical processing: gradient boosting, extra trees, and random forest models. Scientific Reports, 13(1), 1–11. https://doi.org/10.1038/s41598-023-37232-8
Hancock, J. T., & Khoshgoftaar, T. M. (2020). CatBoost for big data: an interdisciplinary review. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00369-8
Huey Fern Tay. (2021). When is it ok to impute missing values with a zero? Towardsdatascience.Com. https://towardsdatascience.com/when-is-it-ok-to-impute-missing-values-with-a-zero-6d94b3bf1352
Hung, L. C., Sung, S. F., & Hu, Y. H. (2020). A machine learning approach to predicting readmission or mortality in patients hospitalized for stroke or transient ischemic attack. Applied Sciences (Switzerland), 10(18), 1–13. https://doi.org/10.3390/APP10186337
Jacob Gursky. (2020). Boosting Showdown: Scikit-Learn vs XGBoost vs LightGBM vs CatBoost in Sentiment Classification. Towardsdatascience.Com. https://towardsdatascience.com/boosting-showdown-scikit-learn-vs-xgboost-vs-lightgbm-vs-catboost-in-sentiment-classification-f7c7f46fd956
Jason Brownlee. (2019a). A Gentle Introduction to Model Selection for Machine Learning. Machinelearningmastery.Com. https://machinelearningmastery.com/a-gentle-introduction-to-model-selection-for-machine-learning/
Jason Brownlee. (2019b). Difference Between Classification and Regression in Machine Learning. Machinelearningmastery.com. https://machinelearningmastery.com/classification-versus-regression-in-machine-learning/
Joseph, V. R., Joseph, V. R., & Stewart, H. M. (2022). Optimal ratio for data splitting. February, 531–538. https://doi.org/10.1002/sam.11583
Kuriakose, D., & Xiao, Z. (2020). Pathophysiology and Treatment of Stroke: Present Status and Future Perspectives. International Journal of Molecular Sciences, 21(20), 1–24.
Lim, Y. (2022). State-of-the-Art Machine Learning Hyperparameter Optimization with Optuna. Towardsdatascience.Com. https://towardsdatascience.com/state-of-the-art-machine-learning-hyperparameter-optimization-with-optuna-a315d8564de1
Mohebi, S., Parham, M., Sharifirad, G., & Gharlipour, Z. (2018). Factors related to 6‑month mortality after the first‑ever stroke. January, 1–6. https://doi.org/10.4103/jehp.jehp
Moore, A., & Bell, M. (2022). XGBoost, A Novel Explainable AI Technique, in the Prediction of Myocardial Infarction: A UK Biobank Cohort Study. Clinical Medicine Insights: Cardiology, 16. https://doi.org/10.1177/11795468221133611
Mridha, K., Ghimire, S., Shin, J., Aran, A., Uddin, M. M., & Mridha, M. F. (2023). Automated Stroke Prediction Using Machine Learning: An Explainable and Exploratory Study With a Web Application for Early Intervention. IEEE Access, 11(June), 52288–52308. https://doi.org/10.1109/ACCESS.2023.3278273
Muslim Karo Karo, I. (2020). Implementasi Metode XGBoost dan Feature Importance untuk Klasifikasi pada Kebakaran Hutan dan Lahan. Journal of Software Engineering, Information and Communication Technology, 1(1), 11–18.
Neto, C., Brito, M., Peixoto, H., Lopes, V., Abelha, A., & Machado, J. (2020). Prediction of Length of Stay for Stroke Patients Using Artificial Neural Networks. Advances in Intelligent Systems and Computing, 1159 AISC(Dm), 212–221. https://doi.org/10.1007/978-3-030-45688-7_22
Ogunleye, B. O. (2021). Statistical Learning Approaches to Sentiment Analysis in the Nigerian Banking Context A thesis submitted in partial fulfilment of the requirements of Sheffield Hallam University for the degree of Doctor of Philosophy Bayode Oluwatoba Ogunleye October 2021. October.
Oh, T., Kim, D., Lee, S., Won, C., Kim, S., Yang, J., Yu, J., Kim, B., & Lee, J. (2022). Machine learning ‑ based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Scientific Reports, 1–11. https://doi.org/10.1038/s41598-022-06333-1
Olson, R. S., La Cava, W., Mustahsan, Z., Varik, A., & Moore, J. H. (2018). Data-driven advice for applying machine learning to bioinformatics problems. Pacific Symposium on Biocomputing, 0(212669), 192–203. https://doi.org/10.1142/9789813235533_0018
Pacheco-Barrios, K., Giannoni-Luza, S., Navarro-Flores, A., Rebello-Sanchez, I., Parente, J., Balbuena, A., de Melo, P. S., Otiniano-Sifuentes, R., Rivera-Torrejón, O., Abanto, C., Alva-Diaz, C., Musolino, P. L., & Fregni, F. (2022). Burden of Stroke and Population-Attributable Fractions of Risk Factors in Latin America and the Caribbean. Journal of the American Heart Association, 11(21). https://doi.org/10.1161/JAHA.122.027044
Rachoin, J.-S., Aplin, K. S., Gandhi, S., Kupersmith, E., & Cerceo, E. (2020). Impact of Length of Stay on Readmission in Hospitalized Patients. Cureus, 12(9). https://doi.org/10.7759/cureus.10669
Safaei, N., Safaei, B., Seyedekrami, S., Talafidaryani, M., Masoud, A.,
Wang, S., Li, Q., & Moqri, M. (2022). E-CatBoost: An efficient machine learning framework for predicting ICU mortality using the eICU Collaborative Research Database. In PLoS ONE (Vol. 17, Issue 5 May). https://doi.org/10.1371/journal.pone.0262895
Saikumar Talari. (2022). Random Forest vs Decision Tree: Key Differences. Www.Kdnuggets.Com. https://www.kdnuggets.com/2022/02/random-forest-decision-tree-key-differences.html
Tarwidi, D., Pudjaprasetya, S. R., Adytia, D., & Apri, M. (2023). An optimized XGBoost-based machine learning method for predicting wave run-up on a sloping beach. MethodsX, 10(March), 102119. https://doi.org/10.1016/j.mex.2023.102119
Teoh, D. (2018). Towards stroke prediction using electronic health records. BMC Medical Informatics and Decision Making, 18(1), 1–11. https://doi.org/10.1186/s12911-018-0702-y
Thankachan, K. (2022). What? When? How?: ExtraTrees Classifier. Https://Towardsdatascience.Com/. https://towardsdatascience.com/what-when-how-extratrees-classifier-c939f905851c
Venketasubramanian, N., Yudiarto, F. L., & Tugasworo, D. (2022). Stroke Burden and Stroke Services in Indonesia. Cerebrovascular Diseases Extra, 12(1), 53–57. https://doi.org/10.1159/000524161
Wang, W., Rudd, A. G., Wang, Y., Curcin, V., Wolfe, C. D., Peek, N., & Bray, B. (2022). Risk prediction of 30-day mortality after stroke using machine learning: a nationwide registry-based cohort study. BMC Neurology, 22(1), 1–9. https://doi.org/10.1186/s12883-022-02722-1
WHO. (2021). Cardiovascular diseases (CVDs). Www.Who.Int. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
Yang, C. C., Bamodu, O. A., Chan, L., Chen, J. H., Hong, C. T., Huang, Y. T., & Chung, C. C. (2023). Risk factor identification and prediction models for prolonged length of stay in hospital after acute ischemic stroke using artificial neural networks. Frontiers in Neurology, 14. https://doi.org/10.3389/fneur.2023.1085178
Yi, J., Lee, J., Kim, K. J., Hwang, S. J., & Yang, E. (2020). Why Not To Use Zero Imputation? Correcting Sparsity Bias in Training Neural Networks. 8th International Conference on Learning Representations, ICLR 2020, 1, 1–27
DOI: http://dx.doi.org/10.35671/telematika.v17i1.2816
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .