Performance Evaluation of Naive Bayes Algorithm for Classification of Fertilizer Types
Abstract
Keywords
Full Text:
Link DownloadReferences
Bhatia, P. (2019). Data Mining and Data Warehousing: Principles and Practical Techniques. Cambridge, United Kingdom: Cambridge University Press. Retrieved from: www.cambridge.org/9781108727747
Han, J., Kamber, M., & Pei, J. (2012). Data Mining : Concepts and Techniques (3rd ed.). Waltham, USA: Morgan Kaufmann Pub. doi: 10.1016/C2009-0-61819-5
Jha, G.K., Ranjan, P. and Gaur, M. (2020). A Machine Learning Approach to Recommend Suitable Crops and Fertilizers for Agriculture. In Recommender System with Machine Learning and Artificial Intelligence (eds S.N. Mohanty, J.M. Chatterjee, S. Jain, A.A. Elngar and P. Gupta). doi: 10.1002/9781119711582.ch5
R. Priya, D. Ramesh and E. Khosla, (2018) "Crop Prediction on the Region Belts of India: A Naïve Bayes MapReduce Precision Agricultural Model," 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 99-104, doi: 10.1109/ICACCI.2018.8554948
Roy, A. H. (2017). Fertilizers and Food Production. In J. A. Kent, T. V. Bommaraju, & S. D. Barnicki, Handbook of Industrial Chemistry and Biotechnology (13th ed.) (pp. 757-804). Cham, Switzerland: Springer International Publishing.
Suntoro, J. (2019). Data Mining : Algoritma dan Implementasi dengan Pemrograman PHP. Jakarta, Indonesia: PT Elex Media Komputindo.
Walida, H., Harahap, F. S., Dalimunthe, B. A., Hasibuan, R., Nasution, A. P., & Sidabukke, S. H. (2020). Pengaruh Pemberian Pupuk Urea Dan Pupuk Kandang Kambing Terhadap Beberapa Sifat Kimia Tanah Dan Hasil Tanaman Sawi Hijau. Jurnal Tanah Dan Sumberdaya Lahan, 7(2), 283–289. doi: https://doi.org/10.21776/ub.jtsl.2020.007.2.12
Witten, I. H., Frank, E., Hall, M. A., & Pal, C. J. (2017). Data Mining : Practical Machine Learning Tools and Techniques (4th ed.). United States: Morgan Kaufmann.
Zaki, M. J., & Meira, W. (2014). Data Mining and Analysis : Fundamentals Concepts and Algorithms. New York, USA: Cambridge University Press .
Zelle, J. M. (2017). Python Programming: an Introduction to Computer Science (3rd ed.). USA: Franklin, Beedle & Associates.
Wang, J. L., Liu, K. L., Zhao, X. Q., Zhang, H. Q., Li, D., Li, J. J., & Shen, R. F. (2021). Balanced fertilization over four decades has sustained soil microbial communities and improved soil fertility and rice productivity in red paddy soil. Science of The Total Environment, 793, 148664. doi: 10.1016/j.scitotenv.2021.148664
Pahalvi, H. N., Rafiya, L., Rashid, S., Nisar, B., & Kamili, A. N. (2021). Chemical fertilizers and their impact on soil health. In Microbiota and Biofertilizers, Vol 2 (pp. 1-20). Springer, Cham. doi: 10.1007/978-3-030-61010-4_1
Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277-2293. doi: 10.1007/s00500-020-05297-6
Bhatt, M. K., Labanya, R., & Joshi, H. C. (2019). Influence of long-term chemical fertilizers and organic manures on soil fertility-A review. Universal Journal of Agricultural Research, 7(5), 177-188. doi: 10.13189/ujar.2019.070502
Jha, G. K., Ranjan, P., & Gaur, M. (2020). A Machine Learning Approach to Recommend Suitable Crops and Fertilizers for Agriculture. Recommender System with Machine Learning and Artificial Intelligence: Practical Tools and Applications in Medical, Agricultural and Other Industries, 89-99. doi: 10.1002/9781119711582.ch5
De Souza, G. F. M., Melani, A. H. D. A., Michalski, M. A. D. C., & Da Silva, R. F. (Eds.). (2021). Reliability Analysis and Asset Management of Engineering Systems. Elsevier.
Lopes, F., Agnelo, J., Teixeira, C. A., Laranjeiro, N., & Bernardino, J. (2020). Automating orthogonal defect classification using machine learning algorithms. Future Generation Computer Systems, 102, 932-947. doi: 10.1016/j.future.2019.09.009
Akshatha, G. C., & Shastry, K. A. (2022). Crop and Fertilizer Recommendation System Based on Soil Classification. In Recent Advances in Artificial Intelligence and Data Engineering (pp. 29-40). Springer, Singapore. doi: 10.1007/978-981-16-3342-3_3
DOI: http://dx.doi.org/10.35671/telematika.v15i1.1410
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .