Survey on Deep Learning Based Intrusion Detection System
Abstract
Keywords
Full Text:
Link DownloadReferences
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., … Zheng, X. (2016). TensorFlow: A system for large-scale machine learning. Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016.
Aghdam, M. H., & Kabiri, P. (2016). Feature selection for intrusion detection system using ant colony optimization. International Journal of Network Security.
Al-Qatf, M., Lasheng, Y., Al-Habib, M., & Al-Sabahi, K. (2018). Deep Learning Approach Combining Sparse Autoencoder with SVM for Network Intrusion Detection. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2869577
Aldweesh, A., Derhab, A., & Emam, A. Z. (2020). Deep learning approaches for anomaly-based intrusion detection systems: A survey, taxonomy, and open issues. Knowledge-Based Systems, 189. https://doi.org/10.1016/j.knosys.2019.105124
Alkasassbeh, M., Al-Naymat, G., B.A, A., & Almseidin, M. (2016). Detecting Distributed Denial of Service Attacks Using Data Mining Techniques. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/ijacsa.2016.070159
Alom, M. Z., & Taha, T. M. (2017). Network intrusion detection for cyber security using unsupervised deep learning approaches. Proceedings of the IEEE National Aerospace Electronics Conference, NAECON. https://doi.org/10.1109/NAECON.2017.8268746
Alrawashdeh, K., & Purdy, C. (2017). Toward an online anomaly intrusion detection system based on deep learning. Proceedings - 2016 15th IEEE International Conference on Machine Learning and Applications, ICMLA 2016. https://doi.org/10.1109/ICMLA.2016.167
Anderson, J. P. (1980). Computer security threat monitoring and surveillance. Technical Report James P Anderson Co Fort Washington Pa. https://doi.org/citeulike-article-id:592588
Bace, R., & Mell, P. (2001). NIST special publication on intrusion detection
systems. In Nist Special Publication.
Beer, F., Hofer, T., Karimi, D., & Bühler, U. (2017). A new attack composition for network security. Lecture Notes in Informatics (LNI), Proceedings - Series of the Gesellschaft Fur Informatik (GI).
Beigi, E. B., Jazi, H. H., Stakhanova, N., & Ghorbani, A. A. (2014). Towards effective feature selection in machine learning-based botnet detection approaches. 2014 IEEE Conference on Communications and Network Security, CNS 2014. https://doi.org/10.1109/CNS.2014.6997492
Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. L. (2019). A survey of deep learning methods for cyber security. In Information (Switzerland) (Vol. 10, Issue 4). https://doi.org/10.3390/info10040122
Bhattacharya, S., & Selvakumar, S. (2015). SSENet-2014 Dataset: A Dataset for Detection of Multiconnection Attacks. Proceedings - 2014 3rd International Conference on Eco-Friendly Computing and Communication Systems, ICECCS 2014. https://doi.org/10.1109/Eco-friendly.2014.100
Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2015). Towards generating real-life datasets for network intrusion detection. International Journal of Network Security.
Chung, J., Gülçehre, Ç., Cho, K., & Bengio, Y. (2014). Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling. CoRR, abs/1412.3. http://arxiv.org/abs/1412.3555
CyberEdge Group. (2020). 2020 Cyberthreat Defense Report. https://cyber-edge.com/cdr/
Deng, J., Zhang, Z., Marchi, E., & Schuller, B. (2013). Sparse autoencoder-based feature transfer learning for speech emotion recognition. Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013. https://doi.org/10.1109/ACII.2013.90
Ding, S., & Wang, G. (2018). Research on intrusion detection technology based on deep learning. 2017 3rd IEEE International Conference on Computer and Communications, ICCC 2017. https://doi.org/10.1109/CompComm.2017.8322786
Drewek-Ossowicka, A., Pietrołaj, M., & Rumiński, J. (2021). A survey of neural networks usage for intrusion detection systems. Journal of Ambient Intelligence and Humanized Computing, 12(1). https://doi.org/10.1007/s12652-020-02014-x
Erickson, B. J., Korfiatis, P., Akkus, Z., Kline, T., & Philbrick, K. (2017). Toolkits and Libraries for Deep Learning. In Journal of Digital Imaging. https://doi.org/10.1007/s10278-017-9965-6
Farahnakian, F., & Heikkonen, J. (2018). A deep auto-encoder based approach for intrusion detection system. International Conference on Advanced Communication Technology, ICACT. https://doi.org/10.23919/ICACT.2018.8323688
Fulkerson, B., Michie, D., Spiegelhalter, D. J., & Taylor, C. C. (1995). Machine Learning, Neural and Statistical Classification. Technometrics. https://doi.org/10.2307/1269742
Gamage, S., & Samarabandu, J. (2020). Deep learning methods in network intrusion detection: A survey and an objective comparison. Journal of Network and Computer Applications, 169. https://doi.org/10.1016/j.jnca.2020.102767
García, S., Grill, M., Stiborek, J., & Zunino, A. (2014). An empirical comparison of botnet detection methods. Computers and Security. https://doi.org/10.1016/j.cose.2014.05.011
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative adversarial nets. Advances in Neural Information Processing Systems. https://doi.org/10.3156/jsoft.29.5_177_2
Graves, A., & Jaitly, N. (2014). Towards end-to-end speech recognition with recurrent neural networks. 31st International Conference on Machine Learning, ICML 2014.
Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. https://doi.org/10.1109/ICASSP.2013.6638947
Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., & Claffy, K. C. (2009). GT: Picking up the truth from the ground for internet traffic. Computer Communication Review. https://doi.org/10.1145/1629607.1629610
Gurung, S., Kanti Ghose, M., & Subedi, A. (2019). Deep Learning Approach on Network Intrusion Detection System using NSL-KDD Dataset. International Journal of Computer Network and Information Security. https://doi.org/10.5815/ijcnis.2019.03.02
Haider, W., Hu, J., Slay, J., Turnbull, B. P., & Xie, Y. (2017). Generating realistic intrusion detection system dataset based on fuzzy qualitative modeling. Journal of Network and Computer Applications. https://doi.org/10.1016/j.jnca.2017.03.018
Hassan, M. M., Gumaei, A., Alsanad, A., Alrubaian, M., & Fortino, G. (2020). A hybrid deep learning model for efficient intrusion detection in big data environment. Information Sciences. https://doi.org/10.1016/j.ins.2019.10.069
Heberlein, L. T., Dias, G. V, Levitt, K. N., Mukherjee, B., Wood, J., & Wolber, D. (1989). A network security monitor. https://doi.org/https://doi.org/10.2172/6223037
Hindy, H., Brosset, D., Bayne, E., Seeam, A. K., Tachtatzis, C., Atkinson, R., & Bellekens, X. (2020). A Taxonomy of Network Threats and the Effect of Current Datasets on Intrusion Detection Systems. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.3000179
Hochreiter, S., & Urgen Schmidhuber, J. J. (1997). Long short term memory. Neural computation. MEMORY Neural Computation.
Hofstede, R., Hendriks, L., Sperotto, A., & Pras, A. (2014). SSH compromise detection using NetFlow/IPFIX. Computer Communication Review. https://doi.org/10.1145/2677046.2677050
Ieracitano, C., Adeel, A., Gogate, M., Dashtipour, K., Morabito, F. C., Larijani, H., Raza, A., & Hussain, A. (2018). Statistical Analysis Driven Optimized Deep Learning System for Intrusion Detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-030-00563-4_74
Jazi, H. H., Gonzalez, H., Stakhanova, N., & Ghorbani, A. A. (2017). Detecting HTTP-based application layer DoS attacks on web servers in the presence of sampling. Computer Networks. https://doi.org/10.1016/j.comnet.2017.03.018
Kent, A. D. (2016). Cyber security data sources for dynamic network research. In Dynamic Networks and Cyber-Security. https://doi.org/10.1142/9781786340757_0002
Khan, F. A., Gumaei, A., Derhab, A., & Hussain, A. (2019). TSDL: A Two-Stage Deep Learning Model for Efficient Network Intrusion Detection. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2899721
Kim, J., Kim, J., Thu, H. L. T., & Kim, H. (2016). Long Short Term Memory Recurrent Neural Network Classifier for Intrusion Detection. 2016 International Conference on Platform Technology and Service, PlatCon 2016 - Proceedings. https://doi.org/10.1109/PlatCon.2016.7456805
Kolias, C., Kambourakis, G., Stavrou, A., & Gritzalis, S. (2016). Intrusion detection in 802.11 networks: Empirical evaluation of threats and a public dataset. IEEE Communications Surveys and Tutorials. https://doi.org/10.1109/COMST.2015.2402161
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001284
Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks. https://doi.org/10.1109/72.554195
Lee, H., Battle, A., Raina, R., & Ng, A. Y. (2007). Efficient sparse coding algorithms. Advances in Neural Information Processing Systems. https://doi.org/10.7551/mitpress/7503.003.0105
Lee, S. M., Yoon, S. M., & Cho, H. (2017). Human activity recognition from accelerometer data using Convolutional Neural Network. 2017 IEEE International Conference on Big Data and Smart Computing, BigComp 2017. https://doi.org/10.1109/BIGCOMP.2017.7881728
Li, Z., Qin, Z., Huang, K., Yang, X., & Ye, S. (2017). Intrusion detection using convolutional neural networks for representation learning. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-70139-4_87
Lippmann, R. P., Fried, D. J., Graf, I., Haines, J. W., Kendall, K. R., McClung, D., Weber, D., Webster, S. E., Wyschogrod, D., Cunningham, R. K., &
Zissman, M. A. (2000). Evaluating intrusion detection systems: The 1998 DARPA off-line intrusion detection evaluation. Proceedings - DARPA Information Survivability Conference and Exposition, DISCEX 2000. https://doi.org/10.1109/DISCEX.2000.821506
Maciá-Fernández, G., Camacho, J., Magán-Carrión, R., García-Teodoro, P., & Therón, R. (2018). UGR‘16: A new dataset for the evaluation of cyclostationarity-based network IDSs. Computers and Security. https://doi.org/10.1016/j.cose.2017.11.004
Mighan, S. N., & Kahani, M. (2020). A novel scalable intrusion detection system based on deep learning. International Journal of Information Security. https://doi.org/10.1007/s10207-020-00508-5
Moustafa, N., & Slay, J. (2015). UNSW-NB15: A comprehensive data set for network intrusion detection systems (UNSW-NB15 network data set). 2015 Military Communications and Information Systems Conference, MilCIS 2015 - Proceedings. https://doi.org/10.1109/MilCIS.2015.7348942
Nadeem, M., Marshall, O., Singh, S., Fang, X., & Yuan, X. (2016). Semi-Supervised Deep Neural Network for Network Intrusion Detection. Research and Practice.
Naseer, S., Saleem, Y., Khalid, S., Bashir, M. K., Han, J., Iqbal, M. M., & Han, K. (2018). Enhanced network anomaly detection based on deep neural networks. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2863036
Niyaz, Q., Sun, W., Javaid, A. Y., & Alam, M. (2015). A deep learning approach for network intrusion detection system. EAI International Conference on Bio-Inspired Information and Communications Technologies (BICT). https://doi.org/10.4108/eai.3-12-2015.2262516
Nweke, H. F., Teh, Y. W., Al-garadi, M. A., & Alo, U. R. (2018). Deep learning algorithms for human activity recognition using mobile and wearable sensor networks: State of the art and research challenges. In Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2018.03.056
Otoum, S., Kantarci, B., & Mouftah, H. T. (2019). On the Feasibility of Deep Learning in Sensor Network Intrusion Detection. IEEE Networking Letters. https://doi.org/10.1109/lnet.2019.2901792
Pang, R., Allman, M., Bennett, M., Lee, J., Paxson, V., & Tierney, B. (2005). A first look at modern enterprise traffic. Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC. https://doi.org/10.1145/1330107.1330110
Papamartzivanos, D., Gomez Marmol, F., & Kambourakis, G. (2019). Introducing Deep Learning Self-Adaptive Misuse Network Intrusion Detection Systems. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2893871
Parvat, A., Chavan, J., Kadam, S., Dev, S., & Pathak, V. (2017). A survey of deep-learning frameworks. Proceedings of the International Conference on Inventive Systems and Control, ICISC 2017. https://doi.org/10.1109/ICISC.2017.8068684
Ranzato, M., Boureau, Y. L., & Le Cun, Y. (2009). Sparse feature learning for deep belief networks. Advances in Neural Information Processing Systems 20 - Proceedings of the 2007 Conference.
Razavian, A. S., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: An astounding baseline for recognition. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. https://doi.org/10.1109/CVPRW.2014.131
Ring, M., Landes, D., & Hotho, A. (2018). Detection of slow port scans in flow-based network traffic. PLoS ONE. https://doi.org/10.1371/journal.pone.0204507
Ring, M., Wunderlich, S., Scheuring, D., Landes, D., & Hotho, A. (2019). A survey of network-based intrusion detection data sets. In Computers and Security. https://doi.org/10.1016/j.cose.2019.06.005
Roy, S. S., Mallik, A., Gulati, R., Obaidat, M. S., & Krishna, P. V. (2017). A deep learning based artificial neural network approach for intrusion detection. Communications in Computer and Information Science. https://doi.org/10.1007/978-981-10-4642-1_5
Saad, S., Traore, I., Ghorbani, A., Sayed, B., Zhao, D., Lu, W., Felix, J., & Hakimian, P. (2011). Detecting P2P botnets through network behavior analysis and machine learning. 2011 9th Annual International Conference on Privacy, Security and Trust, PST 2011. https://doi.org/10.1109/PST.2011.5971980
Sangster, B., O’Connor, T. J., Cook, T., Fanelli, R., Dean, E., Adams, W. J., Morrell, C., & Conti, G. (2009). Toward instrumenting network warfare competitions to generate labeled datasets. 2nd Workshop on Cyber Security Experimentation and Test, CSET 2009.
Santanna, J. J., Van Rijswijk-Deij, R., Hofstede, R., Sperotto, A., Wierbosch, M., Granville, L. Z., & Pras, A. (2015). Booters - An analysis of DDoS-as-a-service attacks. Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management, IM 2015. https://doi.org/10.1109/INM.2015.7140298
Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing. https://doi.org/10.1109/78.650093
Sharafaldin, I., Gharib, A., Lashkari, A. H., & Ghorbani, A. A. (2017). Towards a Reliable Intrusion Detection Benchmark Dataset. Software Networking. https://doi.org/10.13052/jsn2445-9739.2017.009
Sharma, R., Singla, R. K., & Guleria, A. (2018). A New Labeled Flow-based DNS Dataset for Anomaly Detection: PUF Dataset. Procedia Computer Science. https://doi.org/10.1016/j.procs.2018.05.079
Shiravi, A., Shiravi, H., Tavallaee, M., & Ghorbani, A. A. (2012). Toward developing a systematic approach to generate benchmark datasets for intrusion detection. Computers and Security. https://doi.org/10.1016/j.cose.2011.12.012
Shone, N., Ngoc, T. N., Phai, V. D., & Shi, Q. (2018). A Deep Learning Approach to Network Intrusion Detection. IEEE Transactions on Emerging Topics in Computational Intelligence. https://doi.org/10.1109/TETCI.2017.2772792
Singh, R., Kumar, H., & Singla, R. K. (2015). A reference dataset for network traffic activity based intrusion detection system. International Journal of Computers, Communications and Control. https://doi.org/10.15837/ijccc.2015.3.1924
Singla, A., Bertino, E., & Verma, D. (2020). Preparing Network Intrusion Detection Deep Learning Models with Minimal Data Using Adversarial Domain Adaptation. Proceedings of the 15th ACM Asia Conference on Computer and Communications Security, ASIA CCS 2020. https://doi.org/10.1145/3320269.3384718
Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., & Nakao, K. (2011). Statistical analysis of honeypot data and building of Kyoto 2006+ dataset for NIDS evaluation. Proceedings of the 1st Workshop on Building Analysis Datasets and Gathering Experience Returns for Security, BADGERS 2011. https://doi.org/10.1145/1978672.1978676
Sperotto, A., Sadre, R., Van Vliet, F., & Pras, A. (2009). A labeled data set for flow-based intrusion detection. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-04968-2_4
Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A. A. (2009). A detailed analysis of the KDD CUP 99 data set. IEEE Symposium on Computational Intelligence for Security and Defense Applications, CISDA 2009. https://doi.org/10.1109/CISDA.2009.5356528
Turcotte, M. J. M., Kent, A. D., & Hash, C. (2017). Unified host and network data set. In arXiv. https://doi.org/10.1142/9781786345646_001
UCI Machine Learning Repository. (2015). KDD Cup 1999 Data. In 1999]. Http://Kdd. Ics. Uci. Edu/Databases/Kddcup99/Kddcup99. Html.
Ustebay, S., Turgut, Z., & Aydin, M. A. (2019). Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier. International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism, IBIGDELFT 2018 - Proceedings. https://doi.org/10.1109/IBIGDELFT.2018.8625318
Van, N. T., Thinh, T. N., & Sach, L. T. (2017). An anomaly-based network intrusion detection system using Deep learning. Proceedings - 2017 International Conference on System Science and Engineering, ICSSE 2017. https://doi.org/10.1109/ICSSE.2017.8030867
Vasudevan, A. R., Harshini, E., & Selvakumar, S. (2011). SSENet-2011: A Network Intrusion Detection System dataset and its comparison with KDD CUP 99 dataset. Asian Himalayas International Conference on Internet. https://doi.org/10.1109/AHICI.2011.6113948
Viegas, E. K., Santin, A. O., & Oliveira, L. S. (2017). Toward a reliable anomaly-based intrusion detection in real-world environments. Computer Networks. https://doi.org/10.1016/j.comnet.2017.08.013
Vinayakumar, R., Alazab, M., Soman, K. P., Poornachandran, P., Al-Nemrat, A., & Venkatraman, S. (2019). Deep Learning Approach for Intelligent Intrusion Detection System. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2895334
Vinayakumar, R., Soman, K. P., & Poornachandrany, P. (2017). Applying convolutional neural network for network intrusion detection. 2017 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2017. https://doi.org/10.1109/ICACCI.2017.8126009
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning. https://doi.org/10.1145/1390156.1390294
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., & Manzagol, P. A. (2010). Stacked denoising autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion. Journal of Machine Learning Research.
Wang, H., & Yu, C. N. (2019). A Direct Approach to Robust Deep Learning Using Adversarial Networks. In arXiv.
Wang, Z. (2018). Deep Learning-Based Intrusion Detection with Adversaries. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2854599
Wheelus, C., Khoshgoftaar, T. M., Zuech, R., & Najafabadi, M. M. (2014). A session based approach for aggregating network traffic data - The SANTA dataset. Proceedings - IEEE 14th International Conference on Bioinformatics and Bioengineering, BIBE 2014. https://doi.org/10.1109/BIBE.2014.72
Xin, Y., Kong, L., Liu, Z., Chen, Y., Li, Y., Zhu, H., Gao, M., Hou, H., & Wang, C. (2018). Machine Learning and Deep Learning Methods for Cybersecurity. IEEE Access. https://doi.org/10.1109/ACCESS.2018.2836950
Yang, K., Liu, J., Zhang, C., & Fang, Y. (2019). Adversarial Examples Against the Deep Learning Based Network Intrusion Detection Systems. Proceedings - IEEE Military Communications Conference MILCOM. https://doi.org/10.1109/MILCOM.2018.8599759
Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A Deep Learning Approach for Intrusion Detection Using Recurrent Neural Networks. IEEE Access. https://doi.org/10.1109/ACCESS.2017.2762418
Yu, Y., Long, J., & Cai, Z. (2017). Session-based network intrusion detection using a deep learning architecture. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-67422-3_13
Zavrak, S., & Iskefiyeli, M. (2020). Anomaly-Based Intrusion Detection from Network Flow Features Using Variational Autoencoder. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3001350
Zeng, Y., Gu, H., Wei, W., & Guo, Y. (2019). Deep-Full-Range: A Deep Learning Based Network Encrypted Traffic Classification and Intrusion Detection Framework. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2908225
Zhang, H., Wu, C. Q., Gao, S., Wang, Z., Xu, Y., & Liu, Y. (2018). An Effective Deep Learning Based Scheme for Network Intrusion Detection. Proceedings - International Conference on Pattern Recognition. https://doi.org/10.1109/ICPR.2018.8546162
Zhao, G., Zhang, C., & Zheng, L. (2017). Intrusion detection using deep belief network and probabilistic neural network. Proceedings - 2017 IEEE International Conference on Computational Science and Engineering and IEEE/IFIP International Conference on Embedded and Ubiquitous Computing, CSE and EUC 2017. https://doi.org/10.1109/CSE-EUC.2017.119
Zuech, R., Khoshgoftaar, T. M., Seliya, N., Najafabadi, M. M., & Kemp, C. (2015). A new intrusion detection benchmarking system. Proceedings of the 28th International Florida Artificial Intelligence Research Society Conference, FLAIRS 2015.
DOI: http://dx.doi.org/10.35671/telematika.v14i2.1317
Refbacks
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .