Topic Modeling of Online Media News Titles during COVID-19 Emergency Response in Indonesia Using the Latent Dirichlet Allocation (LDA) Algorithm
Abstract
Keywords
Full Text:
Link DownloadReferences
Bangun, E. P., A Koagouw, F. V. I., & Kalangi, J. S. (2019). Analisis isi unsur kelengkapan berita pada media online manadopostonline.com. Acta Diurna Komunikasi, 1(3), 4–13.
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet Allocation. 3, 993–1022.
Destarani, A. R., Slamet, I., & Subanti, S. (2019). Trend Topic Analysis using Latent Dirichlet Allocation (LDA) (Study Case: Denpasar People’s Complaints Online Website). Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 5(1), 50–58. https://doi.org/10.26555/jiteki.v5i1.13088
Hidayatullah, A. F. (2016). Pengaruh Stopword Terhadap Performa Klasifikasi Tweet Berbahasa Indonesia. JISKA (Jurnal Informatika Sunan Kalijaga), 1(1), 1–4. https://doi.org/http://dx.doi.org/10.14421/jiska.2016.11-01
Ja’far, A. N. (2018). Topic Modeling of APP Review in Google Play Based on Latent Dirichlet Allocation.
Keraf, G. (1980). Komposisi. Flores: Nusa Indah.
Kristanto, T. A. (2019). Media Cetak, Tak Cukup Dua Kaki. Jurnal Dewan Pers, 20(November), 9–17.
Kurniawan, W. (2018). Sistem Monitoing Pecakapan Pada Toko Online Menggunakan Metode Latent Dirichlet Allocation (LDA) Studi Kasus: Toko Online “BERRYBENKA.COM.”
Mohammed, S. H., & Al-Augby, S. (2020). LSA & LDA topic modeling classification: Comparison study on E-books. Indonesian Journal of Electrical Engineering and Computer Science, 19(1), 353–362. https://doi.org/10.11591/ijeecs.v19.i1.pp353-362
Newman, D., Lau, J. H., Grieser, K., & Baldwin, T. (2010). Automatic evaluation of topic coherence. NAACL HLT 2010 - Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Proceedings of the Main
Conference, June, 100–108.
Pao, M. L. (1990). Concepts of Information Retrieval . Miranda Lee Pao. In The Library Quarterly (Vol. 60, Issue 1). Libraries Unlimited. https://doi.org
/10.1086/602200
Putra, I. M. K. B. (2017). Analisis Topik Informasi Publik Media Sosial di Surabaya Menggunakan Pemodelan Latent Dirichlet Allocation (LDA).
Python Sastrawi. (n.d.). https://github.com/sastrawi/sastrawi
Röder, M., Both, A., & Hinneburg, A. (2015). Exploring the space of topic coherence measures. WSDM 2015 - Proceedings of the 8th ACM International Conference on Web Search and Data Mining, 399–408. https://doi.org/10.1145/2684822.2685324
Sastrawi. (n.d.). https://github.com/har07/PySastrawi
Shafiei, M. M. (2009). Leveraging structural information for statistical topic models of text.
Stehman, S. V. (1997). Selecting and interpreting measures of thematic classification accuracy. Remote Sensing of Environment, 62(1). https://doi.org/10.1016/S0034-4257(97)00083-7
DOI: http://dx.doi.org/10.35671/telematika.v14i2.1225
Refbacks
- There are currently no refbacks.
Indexed by:
Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia
This work is licensed under a Creative Commons Attribution 4.0 International License .