Modification CNN Transfer Learning for Classification MRI Brain Tumor

Retno Wardhani, Nur Nafi'iyah

Abstract


Identification, or detecting the infected part of a brain tumor on an MRI image, requires precision and takes a long time. MRI (Magnetic Resonance Imaging) is a magnetic resonance imaging technique to examine and take pictures of organs, tissues, and skeletal systems. The brain is essential because it is the center of the nervous system, which controls all human activities. Therefore, MRI of the brain has an important role, one of which is used for analysis or consideration before performing surgery. However, MRI images cannot provide optimal results when analyzed due to noise, and the bone and tumor (lumps of flesh) have the same appearance. AI (artificial intelligence), or digital image processing and computer vision, can analyze MRI images to detect or identify tumors correctly. This study proposes changes to the last layer of CNN (Convolution Neural Network) transfer learning (VGG16, InceptionV3, and ResNet-50) to identify brain tumor disease on MRI. Data were taken from Kaggle with types of glioma, meningioma, no tumor, and pituitary, with a total of 5712 training images and 1311 testing images. The proposed changes include a flattening layer and a pooling layer. The result is that replacing the flatten layer further improves accuracy, and the accuracy of the transfer learning CNNs (VGG16, InceptionV3, and ResNet-50) is 0.918, 0.762, and 0.934, respectively.

Keywords


CNN transfer learning; Modification layer; MRI brain tumor.

Full Text:

PDF (Indonesian)

References


Aamir, M., Rahman, Z., Dayo, Z. A., Abro, W. A., Uddin, M. I., Khan, I., Imran, A. S., Ali, Z., Ishfaq, M., Guan, Y., & Hu, Z. (2022). A deep learning approach for brain tumor classification using MRI images. Computers and Electrical Engineering, 101(May), 108105. https://doi.org/10.1016/j.compeleceng.2022.108105

Abiwinanda, N., Hanif, M., Hesaputra, S. T., Handayani, A., & Mengko, T. R. (2020). Brain tumor classification using convolutional neural network. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 11993 LNCS, 335–342. https://doi.org/10.1007/978-3-030-46643-5_33

Adinegoro, A., Atmaja, R. D., & Purnamasari, R. (2015). Deteksi Tumor Otak dengan Ektrasi Ciri & Feature Selection mengunakan Linear Discriminant Analysis (LDA) dan Support Vector Machine (SVM). E-Proceeding of Engineering, 2(2), 2532–2539.

Akbar, F., Rais, A. N., Sobari, I. A., Zuama, R. A., & Rudiarto, B. (2019). Analisis Performa Algoritma Naive Bayes pada Deteksi Otomatis Citra MRI. JITK (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 5(1). https://doi.org/10.33480/jitk.v5i1.586

Astuti, L. W. (2019). Ekstrasi Fitur Citra MRI Otak Menggunakan Data Wavelet Transform (DWT) untuk Klasifikasi Penyakit Tumor Otak. Jurnal Ilmiah Informatika Global, 10(2), 80–86. https://doi.org/10.36982/jig.v10i2.854

Daniel, M. C., & Ruxandra, L. M. (2021). Brain Tumor Classification Using Pretrained Convolutional Neural Networks. 2021 16th International Conference on Engineering of Modern Electric Systems, EMES 2021 - Proceedings, 11(September), 1457–1461. https://doi.org/10.1109/EMES52337.2021.9484102

Deepak, S., & Ameer, P. M. (2019). Brain tumor classification using deep CNN features via transfer learning. Computers in Biology and Medicine, 111(June), 103345. https://doi.org/10.1016/j.compbiomed.2019.103345

Febrianti, A. S., Sardjono, T. A., & Babgei, A. F. (2020). Klasifikasi Tumor Otak pada Citra Magnetic Resonance Image dengan Menggunakan Metode Support Vector Machine. Jurnal Teknik ITS, 9(1). https://doi.org/10.12962/j23373539.v9i1.51587

Gu, Y., & Li, K. (2021). A Transfer Model Based on Supervised Multi-Layer Dictionary Learning for Brain Tumor MRI Image Recognition. Frontiers in Neuroscience, 15. https://doi.org/10.3389/fnins.2021.687496

Harish, P., & Baskar, S. (2020). MRI based detection and classification of brain tumor using enhanced faster R-CNN and Alex Net model. Materials Today: Proceedings, xxxx. https://doi.org/10.1016/j.matpr.2020.11.495

Irmak, E. (2021). Multi-Classification of Brain Tumor MRI Images Using Deep Convolutional Neural Network with Fully Optimized Framework. Iranian Journal of Science and Technology - Transactions of Electrical Engineering, 45(3). https://doi.org/10.1007/s40998-021-00426-9

Kaggle. (n.d.). Dataset MRI. https://www.kaggle.com/masoudnickparvar/brain-tumor-mri-dataset

Kumar, S., Dabas, C., & Godara, S. (2017). Classification of Brain MRI Tumor Images: A Hybrid Approach. Procedia Computer Science, 122, 510–517. https://doi.org/10.1016/j.procs.2017.11.400

M, T. A., & Azizah, Q. N. (2022). Klasifikasi Tumor Otak Menggunakan Ekstraksi Fitur HOG dan Support Vector Machine. 4(1), 45–50.

Sari, Y. A., Dewi, R. K., & Fatichah, C. (2014). Seleksi Fitur Menggunakan Ekstraksi Fitur Bentuk, Warna, dan Tekstur dalam Sistem Temu Kembali Citra Daun. JUTI: Jurnal Ilmiah Teknologi Informasi, 12(1). https://doi.org/10.12962/j24068535.v12i1.a39

Sigit, R., Wulandari, A., Rofiqah, N., & Yuniarti, H. (2019). Automatic detection brain segmentation to detect brain tumor using MRI. International Journal on Advanced Science, Engineering and Information Technology, 9(6). https://doi.org/10.18517/ijaseit.9.6.8536

Soesanti, I., Susanto, A., Widodo, T., & Tjokronagoro, M. (2011). Ekstraksi Ciri dan Identifikasi Citra Otak MRI Berbasis Eigenbrain Image. Forum Teknik, 34(1).

Susmikanti, M. (2010). Pengenalan Pola Berbasis Jaringan Syaraf Tiruan Dalam Analisa CT Scan Tumor Otak Beligna. 2010(Snati), 26–31.

Tjahyaningtijas, H. P. A., Rumala, D. J., Angkoso, C. V., Fanani, N. Z., Santoso, J., Sensusiati, A. D., Ooijen, P. M. A. V., Ketut Eddy Purnama, I. K. E., & Purnomo, M. H. (2021). Brain Tumor Classification in MRI Images Using En-CNN. International Journal of Intelligent Engineering and Systems, 14(4). https://doi.org/10.22266/ijies2021.0831.38

Varuna Shree, N., & Kumar, T. N. R. (2018). Identification and classification of brain tumor MRI images with feature extraction using DWT and probabilistic neural network. Brain Informatics, 5(1). https://doi.org/10.1007/s40708-017-0075-5

Widhiarso, W., Yohannes, Y., & Prakarsah, C. (2018). Brain Tumor Classification Using Gray Level Co-occurrence Matrix and Convolutional Neural Network. IJEIS (Indonesian Journal of Electronics and Instrumentation Systems), 8(2), 179. https://doi.org/10.22146/ijeis.34713

Yuliawan, E., & ’Uyun, S. (2022). Chest X-ray Image Classification for COVID-19 diagnoses.pdf. JISEBI, 8(2), 109–118.




DOI: http://dx.doi.org/10.35671/telematika.v16i2.2272

Refbacks

  • There are currently no refbacks.




Indexed by:


Telematika
ISSN: 2442-4528 (online) | ISSN: 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto, Indonesia


Creative Commons License This work is licensed under a Creative Commons Attribution 4.0 International License .