A Comparative Study on the Combination of Classification Algorithm and Language Model Implementation for Smart Accounting System

Bagas Adi Makayasa, Agung Fatwanto


Micro, Small, and Medium Enterprises (MSMEs) normally dealing with financial documentation and reporting problems due to in sufficient budget for hiring professional accounting services. Although some of them might have utilized off the shelf accounting softwares, they still face many obstacles in compiling a proper financial documentation because the employed software do not have an automatic transaction classification capability to assist users in recording any transactions. This study was aimed to investigate the opportunity of implementing automatic transaction classification for accounting system by using a Natural Language Processing (NLP) approach to automatically interpret the suitable account for any financial transactions based on the text written on the transaction forms. An experiment was conducted to compare the performance of eight combinations comprising of four classification algorithms (i.e. SVM, KNN3, KNN5, and NB) with two language models (i.e. TF-IDF and BoW). The result showed that KNN5 and TF-IDF pair gave highest performance with accuracy 82,5%, precision 82,54%, recall/sensitivity 83,7%, specificity 92,06%, and F1 Score 81,5%.


Accounting; Classification Algorithm; Financial Transaction; Language Model; Natural Language Processing

Full Text:

PDF (Indonesian)


A. Radhakrishnan, D. Mahapatra and A. James, "Consumer Document Analytical Accelerator Hardware," in IEEE Access, vol. 11, pp. 5161-5167, 2023, doi: 10.1109/ACCESS.2023.3237463.

Aziz Husain, Fadhila Tangguh Atmojo, and Erma Susanti, "Analisis Perbandingan Performa Metode Klasifikasi pada Dataset Multiclass Citra Busur Panah", Jurnal Technocom, Vol. 19, No. 3, Agustus 2020: 286-294.

C. Mugisha and I. Paik, "Comparison of Neural Language Modeling Pipelines for Outcome Prediction From Unstructured Medical Text Notes," in IEEE Access, vol. 10, pp. 16489-16498, 2022, doi: 10.1109/ACCESS.2022.3148279.

G. G. Jayasurya, S. Kumar, B. K. Singh and V. Kumar, "Analysis of Public Sentiment on COVID-19 Vaccination Using Twitter," in IEEE Transactions on Computational Social Systems, vol. 9, no. 4, pp. 1101-1111, Aug. 2022, doi: 10.1109/TCSS.2021.3122439.

H. A. Ahmed, N. Z. Bawany and J. A. Shamsi, "CaPBug-A Framework for Automatic Bug Categorization and Prioritization Using NLP and Machine Learning Algorithms," in IEEE Access, vol. 9, pp. 50496-50512, 2021, doi: 10.1109/ACCESS.2021.3069248.

H. S. Nawaz, Z. Shi, Y. Gan, A. Hirpa, J. Dong and H. Zheng, "Temporal Moment Localization via Natural Language by Utilizing Video Question Answers as a Special Variant and Bypassing NLP for Corpora," in IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, pp. 6174-6185, Sept. 2022, doi: 10.1109/TCSVT.2022.3162650.

Hisnul, Pompong Budi Setiadi, Sri Rahayu, " UMKM di Masa Pandemi COVID 19 Berdampak Pada Teknologi Dan Ddigitalisasi Pada Pusat Oleh-Oleh Rahma di Desa Kendalrejo”, Jurnal Ekonomi dan Bisnis, Vol. 11 No. 1 Juli 2022.

Interview with Anam dan Antariksa, UMKM players, at 12 Oktober 2022

Interview with Sony Warsono, Nadya Windi, and Anggit Firmansyah, Lecturer and Sutdent of Magister Akuntansi Universitas Gadjah Mada, pada 04 Oktober 2022

J. Jiang et al., "Enhancements of Attention-Based Bidirectional LSTM for Hybrid Automatic Text Summarization," in IEEE Access, vol. 9, pp. 123660-123671, 2021, doi: 10.1109/ACCESS.2021.3110143.

M. F. Mridha, A. A. Lima, K. Nur, S. C. Das, M. Hasan and M. M. Kabir, "A Survey of Automatic Text Summarization: Progress, Process and Challenges," in IEEE Access, vol. 9, pp. 156043-156070, 2021, doi: 10.1109/ACCESS.2021.3129786.

M. Jayaratne and B. Jayatilleke, "Predicting Personality Using Answers to Open-Ended Interview Questions," in IEEE Access, vol. 8, pp. 115345-115355, 2020, doi: 10.1109/ACCESS.2020.3004002.

Nurul, Lulu, “Pentingnya Penyusunan Laporan Keuangan UMKM Bagi Para Pengusaha Bakery, Cake, dan Pastry (BCP) di Kota Blitar”, Jurnal Graha Pengabdian, Vol 2 No 2, 2020.

P. Danenas and T. Skersys, "Exploring Natural Language Processing in Model-To-Model Transformations," in IEEE Access, vol. 10, pp. 116942-116958, 2022, doi: 10.1109/ACCESS.2022.3219455.

R. Devika, S. Vairavasundaram, C. S. J. Mahenthar, V. Varadarajan and K. Kotecha, "A Deep Learning Model Based on BERT and Sentence Transformer for Semantic Keyphrase Extraction on Big Social Data," in IEEE Access, vol. 9, pp. 165252-165261, 2021, doi: 10.1109/ACCESS.2021.3133651.

S. Salloum, T. Gaber, S. Vadera and K. Shaalan, "A Systematic Literature Review on Phishing Email Detection Using Natural Language Processing Techniques," in IEEE Access, vol. 10, pp. 65703-65727, 2022, doi: 10.1109/ACCESS.2022.3183083.

Syamsul, “Analisis Pencatatan dan Pelaporan Keuangan UMKM di Kota Palu”, Jurnal Keuangan dan Bisnis, Vol 10 No 1, 2022.

Warsono, Sony, “Dasar-Dasar Akuntansi: Tes Potensi Akuntansi”, Yogyakarta, ABPublisher, 2018.

X. Chen, P. Cong and S. Lv, "A Long-Text Classification Method of Chinese News Based on BERT and CNN," in IEEE Access, vol. 10, pp. 34046-34057, 2022, doi: 10.1109/ACCESS.2022.3162614.

DOI: http://dx.doi.org/10.35671/telematika.v16i2.2258


  • There are currently no refbacks.


Indexed by:



ISSN 2442-4528 (online) | ISSN 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto Telp (0281) 623321 Fax (0281) 621662


Creative Commons License
This work is licensed under a  Creative Commons Attribution 4.0 International License.