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Alzheimer's disease (AD) is a progressive neurodegenerative disorder 

characterized by cognitive decline and memory loss; it accounts for 60–70% of 

dementia cases. Early diagnosis remains challenging due to the subtlety of its 

symptoms. This study explores the effectiveness of ensemble methods, feature 

selection techniques, and imputation strategies in enhancing the accuracy of AD 

diagnosis. We applied an ensemble method with Chi-Square feature selection, 

achieving a high accuracy of 95.733% with 7 optimal features. The combination 

of classifiers, including Gradient Boosting (GB), Support Vector Machine 

(SVM), and Logistic Regression (LR), contributed to the high performance. 

Additionally, the use of KNN Imputer and K-Fold Cross Validation significantly 

improved accuracy, regardless of whether feature selection was employed. 

Notably, feature selection slightly reduced model complexity but resulted in a 

marginal decrease in accuracy. The study highlights the importance of these 

methods in achieving reliable AD predictions, though dataset dependency and 

potential biases from methodological choices are acknowledged. Future work 

may involve exploring alternative classifiers and validating findings across 

diverse datasets to enhance generalizability and address these limitations. 

Keywords:  

Alzheimer's Disease Prediction 

KNN Imputer 

Feature Selection Techniques 

K-Fold Cross Validation 

Machine Learning Algorithms 

 
Correspondence: 

E-mail: 

mila.mld@nusamandiri.ac.id 

 

 

INTRODUCTION 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to cognitive 

dysfunction, memory loss, and the accumulation of amyloid plaques and neurofibrillary tangles in the brain 

(Yıldız, et al., 2021) (Hughes, et al., 2020). It is one of the leading causes of dementia, affecting 

approximately 40 million people globally, and poses significant challenges to healthcare systems, 

particularly in low- and middle-income countries, which contribute to 60% of the total dementia cases  

(Sara, et al., 2022). In the United States alone, around 5.1 million people suffer from AD (Peavy, et al., 

2020) (Kavitha, et al., 2022), with many not receiving adequate medical care. According to the World 

Health Organization (WHO), more than 55 million people globally will suffer from dementia by 2023, with 

low- and middle-income countries contributing to 60% of dementia cases. Alzheimer's disease accounts for 

60-70% of dementia cases (Ebrahimi, et al., 2020) (Organization, 2023), and patients require continuous 

care as the disease progresses. AD manifests as memory loss, cognitive decline, and behavioral disturbances 
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(Zhang, et al., 2023). In its later stages, AD can lead to life-threatening complications such as infections, 

malnutrition, and dehydration (Needham, 2022). 

Advancements in research and the utilization of smart sensors and machine learning (ML) 

algorithms have introduced new possibilities for the diagnosis, monitoring, and prediction of AD (Gillani 

& Arslan, 2021) (Shiino, et al., 2021). ML models, particularly those trained on brain imaging data, have 

demonstrated promise in diagnosing AD and predicting its progression (Shiino, et al., 2021). Recent studies 

highlight the significance of ML in detecting Alzheimer's disease at an early stage, a critical factor for 

improving patient outcomes (Uddin, et al., 2023). For instance, Kavitha et al. (2022) utilized data from the 

Open Access Series of Imaging Studies (OASIS) to develop accurate ML models for predicting early-stage 

AD (Kavitha, et al., 2022).  

Machine learning, particularly deep learning techniques such as Convolutional Neural Networks 

(CNNs), has shown significant potential in predicting AD by analyzing neuroimaging data (Beltrán, et al., 

2020) (Marzban, et al., 2020). These models leverage features extracted from MRI scans and biomarkers, 

providing a data-driven approach to AD diagnosis. In one study, Random Forest classifiers achieved an 

accuracy of 86.92% in predicting AD from the OASIS dataset (Kavitha, et al., 2022). In contrast, deep 

learning models like BiLSTM have demonstrated even higher accuracy rates, reaching 95.59% (Dashtipour, 

et al., 2021). 

While these studies have made important strides, several challenges remain, including the selection 

of appropriate classifiers, handling missing data, and determining optimal feature selection methods. Some 

researchers have employed imputation techniques, such as median imputation, to address missing data 

(Kavitha, et al., 2022), while others have used more advanced methods like KNN imputation. Additionally, 

feature selection methods like Chi-Square, Information Gain, and F-Score are commonly applied to 

improve model performance by reducing dimensionality and enhancing accuracy (Basheer, Bhatia, & Sakri, 

2021). 

This study aims to build on these previous findings by exploring the use of KNN imputation for 

handling missing data and investigating a variety of feature selection techniques, including Spearman 

correlation, Chi-Square, Information Gain, Pearson correlation, and F-Score. The study will also evaluate 

the performance of different classifiers, with a particular focus on ensemble methods. To better understand 

how various machine learning models have performed in Alzheimer's disease prediction, Table 1 provides 

a comparative summary of several classifier models and their results from previous studies. By comparing 

the accuracy of classifiers with and without feature selection, this research seeks to contribute to the 

growing body of knowledge on improving machine learning-based approaches to AD diagnosis. 

Table 1. Comparison of Classifier Models for Alzheimer’s Disease Prediction 

Researchers’ Study Dataset Models 
Classification 

accuracy 

Kavitha et al 

(Kavitha, et al., 2022) 

OASIS Dataset 

(Cross-Sectional) 

Random Forest 86,92% Accuracy in 

Random Forest 

Classifier 

Basher et al. 

(Basheer, Bhatia, & 

Sakri, 2021) 

OASIS Imaging 

Dataset 

M-CapNet 92,3% Accuracy with 

M-CapNet 

Malavika et al OASIS 

(longitudinal MRI 

KNN, Adaboost, SVM, 

Logistic Regression, Decision 

Tree, Random Forest 

86,8% Accuracy in 

Random Forest 

Classifier 
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Researchers’ Study Dataset Models 
Classification 

accuracy 

(Malavika, Rajathi, 

Vanitha, & 

Parameswari, 2020) 

data) (Cross 

Longitudinal) 

Dashtipour, et al. 

(2021) 

OASIS Dataset SVM, BiLSTM 82.24% (SVM), 

95.59% (BiLSTM) 

 

METHODS 

The research methodology for data analysis typically involves several key stages to ensure the accuracy 

and reliability of the results. These stages include data collection, data preprocessing, feature selection, data 

splitting, model training and evaluation where model validation uses k-fold cross-validation, and prediction 

models using LR, RF, KNN, NB, SVM, DT, AB, GB, XGB, ANN, and ensemble classifiers, as well as 

performance evaluation. The steps taken to obtain the results of the analysis are illustrated in Figure 1. 

 

Figure 1. Research Method 

1. Data Collection 

Data collection is the initial step in gathering relevant data for analysis (Umar, et al., 2024). The 

dataset used is a longitudinal cross-section from the OASIS dataset, sourced from 

https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers. This dataset contains MRI data on 

https://www.kaggle.com/datasets/jboysen/mri-and-alzheimers
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conversions, serving as the primary data source. It includes data from 150 patients aged 60 to 96 years, 

with all subjects using their right hand. Among the 150 patients, 72 do not have dementia. 

2. Data preprocessing 

Data preprocessing is an essential step for preparing the data by cleaning, handling missing 

values, and standardizing data for analysis (Biswas & Rajan, 2021). The dataset contains 12 variables, 

listed in Table 1.  

Table 1. OASIS Prepossessing Data 

No Variable Description Data Type 

1 Group Class String 

2 M/F Gender String 

3 Age Age Integer 

4 Educ Years of education Integer 

5 SES Socio Economic Status Integer 

6 MMSE Mini-Mental State Examination Integer 

7 CDR Clinical Dementia Rating Integer 

8 eTIV Estimated Total Intracranial Volume Integer 

9 nWBV Normalize Whole Brain Volume Integer 

10 ASF Atlas Scaling Factor Integer 

 

In this study, label encoding was applied to the Group and M/F variables. The "Demented" and 

"Converted" values were replaced with 1, and the "Non-Demented" value was replaced with 0. 

Missing values in the SES and MMSE variables were handled using the KNN imputer. 

3. Feature selection   

Feature selection is an important step to identify the most relevant features for the model, which 

helps reduce dimensionality and improve model efficiency (Celard, et al., 2020). Feature selection 

methods used in this study include Spearman Correlation, Chi-Square, Information Gain, Pearson 

Correlation, and F-Score. These methods help streamline the analysis by focusing on the most 

impactful features, enhancing the efficiency of machine learning models. 

4. Model Training and Evaluation 

Model training involves building a predictive model using the training data, followed by 

evaluation of its performance on test data (Mnguni, 2021). Validation is conducted to assess the 

generalizability of the model, ensuring robustness (Istiqoh, Qodir, & Ahmad, 2022). Model prediction 

involves utilizing the trained model to make predictions on new data points (Zhang, et al., 2023). In 

this stage, machine learning classifiers are used for model training and evaluation. The models used 

are LR, RF, KNN, NB, SVM, DT, AB, GB, XGB, and ensemble classifiers. 

5. Model Validation  

K-fold cross-validation is a commonly used technique for model evaluation. It involves 

dividing the dataset into K subsets (folds), using each fold as a test set while the rest of the data serves 

as the training set (Paramita, 2022) (Chen, et al., 2023). This process is repeated K times, each time 

using a different fold for testing. This technique helps assess model performance, reducing the risk of 

overfitting and providing a better estimate of the model's generalizability (Ayinla & Oremei, 2024) 

(AlZu’b, Zraiqat, & Hendawi, 2022). 
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6. Model Prediction 

Once validated, the trained models are used to make predictions on new data points (Oh, 

Tannenbaum, & Deasy, 2022). The prediction models used in this study include: 

a.    Logistic Regression (RF) 

Logistic regression is a statistical model that is commonly used in binary classification tasks (Kost, 

Rheinbach, & Schaeben, 2019).  

b. Decision Tree (DT) 

Decision tree classifier is a versatile classifier that can handle both numerical and categorical data, 

offering clear interpretability(Abana, 2019). DT has also been utilized in explainable ML, 

explicitly showing how different features contribute to predictions (Cao, Sarlin, & Jung, 2020). 

c. K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm is a straightforward and effective classification 

technique widely used across various domains. However, it can be computationally expensive and 

slow when working with large datasets (Naveed, Madhloom, & Husain, 2021). KNN is capable of 

handling multiclass data without assuming any specific data distribution, making it flexible for 

evolving datasets and suitable for unstructured data. Despite its strengths, KNN suffers from slow 

prediction times on large datasets, is highly sensitive to data scale, and may perform poorly with 

high-dimensional data due to the increasing complexity in calculating distances. 

d. Random Forest (RF) 

Random Forest is a highly versatile ensemble learning method that has found extensive 

applications across various fields due to its robustness and high accuracy. According to (Barbara 

Pes, 2021), RF excels as a classifier, particularly when learning from high-dimensional or class-

imbalanced datasets, demonstrating significant success in dealing with complex data structures 

and imbalanced classification tasks. 

e. AdaBoost (AB) 

AdaBoost, or Adaptive Boosting, is an ensemble technique that combines several weak classifiers 

to create a strong and accurate overall classifier. It is widely used across numerous domains due 

to its effectiveness and adaptability in handling a variety of data types and classification 

challenges. AdaBoost is valued for its ability to improve the performance of weak learners, 

especially in complex problems.  

f. Extreme Gradient Boosting (XGB) 

Extreme Gradient Boosting (XGB) is an advanced gradient boosting algorithm that has become a 

popular choice in machine learning due to its efficiency and effectiveness. XGB builds a robust 

model by combining multiple weak classifiers, typically decision trees, to form a strong ensemble 

capable of handling both classification and regression tasks. The algorithm enhances model 

performance by applying a second-order Taylor expansion to the cost function, leveraging both 

first- and second-order derivatives for better optimization (Xu, Wu, & Chen, 2022). 

g. Naive Bayes (NB) 

Naive Bayes is a popular classification algorithm that uses Bayesian principles and assumes 

feature independence to make predictions. In a study by Winarti et al. (Winarti, et al., 2021), NB 

was compared with KNN for classifying Indonesian language articles, showcasing its application 
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in natural language processing. This supervised algorithm relies on training data and prior 

knowledge for making accurate predictions. 

h. Support Vector Machine (SVM) 

Support Vector Machine (SVM) is a powerful supervised algorithm used for both classification 

and regression tasks. In a study by Zhang et al. (Zhang, Lin, & Wang, 2021), SVM was employed 

for forecasting e-commerce transaction trends by integrating an enhanced Whale Optimization 

Algorithm, showcasing the algorithm's versatility in predictive analytics.  

i. Ensemble 

Ensemble voting methods, such as hard voting and soft voting, are essential for combining the 

predictions of multiple classifiers to enhance overall accuracy and robustness in machine learning. 

Hard voting is suitable for models predicting distinct class labels, while soft voting is preferred 

when models provide probabilities for each class. The study elucidates the differences between 

hard and soft voting, highlighting their applications based on the nature of classifier outputs 

(Πεππές, et al., 2021). Ensemble strategies like hard voting, soft voting, and model stacking have 

been successfully utilized in various domains. Akhtar et al. (Akhtar, et al., 2021) showcased the 

effectiveness of soft and hard voting in an ensemble model for enhanced identification of thyroid 

disorders, emphasizing the importance of ensemble techniques in healthcare applications. In 

conclusion, ensemble voting methods, particularly soft and hard voting, provide a robust 

mechanism to harness the strengths of multiple classifiers, thereby boosting predictive 

performance across diverse fields. 

7. Performance Evaluation 

To evaluate machine learning models, performance metrics such as accuracy, precision, recall, 

and F1 score are commonly used. Studies have demonstrated their effectiveness in various 

applications. Xu et al. (Xu, et al., 2022) utilized the F1 score to assess models predicting clinic 

attendance and HIV/STI testing uptake, while Dong et al. (Dong, et al., 2022) used accuracy and F1 

score for diabetic kidney disease prediction. Ljubobratović et al.  (Ljubobratović, et al., 2022) 

highlighted AUC, accuracy, F1 score, and kappa for evaluating peach maturity prediction, 

emphasizing AUC as a key metric. These studies underscore the importance of robust evaluation 

metrics in assessing model effectiveness across different domains. 

 

RESULTS 

In this research, there were 150 patients aged between 60 and 96 years with the right-hand 

dominance, comprising 213 females, accounting for 57.1%, and 160 males, accounting for 42.9%, as 

depicted in Figure 2. 
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Figure.2. Gender Distribution 

Additionally, in Figure 3 and Figure 4, there are categories for socio-economic status and 

educational level, where higher levels correspond to larger values. 

 

Figure 3. Distribution of Socio-Economic Status 

Based on Figure 3, it is observed that the distribution of socio-economic status data is skewed to the 

left, indicating that the majority of samples have relatively low socio-economic status. 

 

Figure 4. Distribution of Education Levels 

Based on Figure 4, the result shows that the distribution of education levels is symmetrical but 

slightly skewed to the right. Therefore, the education level of the majority of research samples falls within 

the middle to high range. 
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The other features used are the Mini-Mental State Examination, Clinical Dementia Rating, 

Estimated Total Intracranial Volume, and Normalized Whole Brain Volume as shown in Figure 5, Figure 

6, Figure 7, and Figure 8. 

 

Figure 5. Distribution of MMSE 

Based on Figure 5, the results indicate that the majority of research samples have MMSE scores 

ranging from 25 to 30, where the maximum score for MMSE is 30. This indicates that the research samples 

have good cognitive levels or cognitive functions, especially in terms of orientation, memory, calculation, 

abstract thinking, language, and visual-spatial abilities with a good level. However, a small portion of the 

samples has relatively low MMSE scores or good cognitive levels or cognitive functions, especially in 

terms of orientation, memory, calculation, abstract thinking, language, and visual-spatial abilities, with a 

less satisfactory level. 

 

Figure 6. Distribution of eTIV 

Based on Figure 6, the results show that the eTIV values for the majority of samples fall within the 

range of 1200 – 1600 cm3. Referring to the normal eTIV values for adults, which range from 1200 – 2000 

cm3, it can be said that the majority of research samples have normal eTIV values. 
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Figure 7. Distribution of nWBV 

Based on Figure 7, all research samples have nWBV values below 100%. Some samples even have 

nWBV values ranging from 0.700 to 0.750 or 70% to 75% of their brain volume. If the Normalized Whole 

Brain Volume (nWBV) value is less than 100%, it indicates that the normalized brain volume is smaller 

than the estimated total intracranial volume. In this context, an nWBV value less than 100% may indicate 

a reduction in relative brain volume compared to an individual's intracranial size. This could be due to 

various factors, such as brain atrophy associated with aging or certain medical conditions that affect brain 

volume. 

1. Spearman correlation-based feature selection compared to using no feature selection. 

The application of Spearman correlation-based feature selection across various classifiers yielded 

results, as shown in Table 2. 

Table 2. The accuracy values of classifiers with Spearman correlation feature selection versus 

without feature selection. 

No Classifier 
Kavitha 

Research 

Features Without 

Feature 

Selection 4 5 6 7 8 

1 LR - 94,659 94,659 94,659 94,659 94,395 94,659 

2 RF 86,920 92,226 93,848 94,388 95,192 95,462 95,733 

3 KNN - 94,118 94,388 92,525 91,451 91,977 92,809 

4 NB - 94,666 94,666 94,666 94,666 94,666 94,666 

5 SVM 81,670 94,659 94,659 94,659 94,659 94,659 94,659 

6 DT 80,460 90,356 90,085 91,693 92,781 92,511 91,415 

7 AD - 94,403 93,862 93,044 93,855 93,855 93,314 

8 GB - 92,496 92,767 93,030 95,192 95,192 95,192 

9 XGB 85,920 91,970 93,300 93,037 95,192 95,192 95,192 

10 ANN - 94,659 94,659 94,659 94,659 93,848 94,388 

11 Ensemble 1 - 92,226 93,307 94,104 95,469 95,469 95,733 

12 Ensemble 2 - 94,659 94,659 94,659 94,659 94,659 94,659 

13 Ensemble 3 - 90,896 90,619 92,240 93,585 92,767 92,504 

14 Ensemble 4 - 92,504 93,841 94,644 95,462 95,192 94,659 

15 Ensemble 5 - 94,659 94,659 94,659 94,659 94,659 95,733 

16 Ensemble 6 85,120 94,659 94,659 94,659 94,659 94,659 94,659 

*)        = Best Accuracy 

Ensemble 1 = RF, GB, XGB Ensemble 4 = RF, AD, XGB 
Ensemble 2 = LR, SVM, KNN Ensemble 5 = GB, SVM, LR 

Ensemble 3 = DT, AD, ANN Ensemble 6 = All classifiers 
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In Table 2, the Naive Bayes classifier consistently achieved the highest accuracy of 94.666% when 

employing 4, 5, and 6 features. Using 7 and 8 features, Ensemble 1 maintained a consistent accuracy of 

95.469%. However, without feature selection, RF, Ensemble 1, and Ensemble 5 obtained the highest 

accuracy of 95.733%, which is 0.264% higher than Ensemble 1 with seven features and 1.067% higher than 

Naive Bayes using only four features. 

2. Chi Square-Based Feature Selection Compared To Using No Feature Selection 

The application of Chi Square-based feature selection across various classifiers yielded results, as 

shown in Table 3. 

Table 3. The accuracy values of classifiers with Chi-square feature selection versus without feature 

selection. 

No Classifier 
Kavitha 

Research 

Features Without 

Feature 

Selection 
4 5 6 7 8 

1 LR - 94,659 94,659 94,659 94,659 94,659 94,659 

2 RF 86,920 94,381 94,659 95,192 94,929 94,922 95,733 

3 KNN - 94,659 94,125 91,992 91,451 92,006 92,809 

4 NB - 94,666 94,666 94,403 94,666 94,666 94,666 

5 SVM 81,670 94,659 94,659 94,659 94,659 94,659 94,659 

6 DT 80,460 92,240 90,370 91,977 92,781 93,037 91,415 

7 AD - 93,862 94,125 94,936 93,855 93,314 93,314 

8 GB - 93,065 94,395 95,206 95,192 94,922 95,192 

9 XGB 85,920 93,578 93,578 95,462 95,192 95,192 95,192 

10 ANN - 94,659 94,659 94,659 94,659 94,388 94,388 

11 Ensemble 1 - 95,192 94,388 95,199 95,469 95,192 95,733 

12 Ensemble 2 - 94,659 94,659 94,659 94,659 94,659 94,659 

13 Ensemble 3 - 92,767 91,444 93,585 93,585 93,300 92,504 

14 Ensemble 4 - 94,659 94,659 94,659 94,659 94,659 94,659 

15 Ensemble 5 - 94,644 93,848 95,199 95,733 95,733 95,733 

16 Ensemble 6 85,120 94,659 94,659 94,659 94,659 94,659 94,659 

*)        = Best Accuracy 

Ensemble 1 = RF, GB, XGB Ensemble 4 = RF, AD, XGB 

Ensemble 2 = LR, SVM, KNN Ensemble 5 = GB, SVM, LR 

Ensemble 3 = DT, AD, ANN Ensemble 6 = All classifiers 

 

In Table 3, the utilization of 4 features by Ensemble 1 yielded the highest accuracy of 95.192%. 

Employing five features, the NB classifier achieved the highest accuracy of 94.666%. Using six features, 

the XGB classifier attained the highest accuracy of 95.462%. When employing 7 and 8 features, Ensemble 

5 consistently achieved an accuracy of 95.733%. Conversely, without feature selection, the highest 

accuracy was achieved by RF, Ensemble 1, and Ensemble 5, all recording 95.733%, identical to Ensemble 

5 with seven features. This accuracy was 0.271% higher than that of XGB with six features, 1.067% higher 

than NB with five features, and 0.541% higher than Ensemble 1 with only four features.  

3. Information Gain-Based Feature Selection Compared To Using No Feature Selection 

The application of Information gain-based feature selection across various classifiers yielded results 

as shown in Table 4. 

Table 4. The accuracy values of classifiers with Information Gain feature selection versus those without 

feature selection.  

No Classifier 
Kavitha 

Research 

Features Without 

Feature 

Selection 
4 5 6 7 8 

1 LR - 94,659 94,659 94,659 94,659 94,395 94,659 

2 RF 86,920 94,922 95,192 95,455 95,199 94,922 95,733 

3 KNN - 95,192 95,185 93,044 92,518 91,977 92,809 
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No Classifier 
Kavitha 

Research 

Features Without 

Feature 

Selection 
4 5 6 7 8 

4 NB - 94,666 94,666 94,666 94,403 94,666 94,666 

5 SVM 81,670 94,659 94,659 94,659 94,659 94,659 94,659 

6 DT 80,460 90,619 91,152 91,700 92,511 92,240 91,415 

7 AD - 94,125 93,855 93,855 93,585 93,855 93,314 

8 GB - 95,192 95,192 94,118 94,659 95,192 95,192 

9 XGB 85,920 95,192 95,192 95,185 94,922 95,192 95,192 

10 ANN - 94,659 94,659 94,659 94,659 94,118 94,388 

11 Ensemble 1 - 95,462 95,462 95,185 95,199 95,733 95,733 

12 Ensemble 2 - 94,659 94,659 94,659 94,659 94,659 94,659 

13 Ensemble 3 - 92,226 91,686 92,760 93,307 93,044 92,504 

14 Ensemble 4 - 94,929 94,929 94,659 94,659 94,659 94,659 

15 Ensemble 5 - 95,462 95,462 94,922 95,199 95,199 95,733 

16 Ensemble 6 85,120 94,659 94,659 94,659 94,659 94,659 94,659 

*)        = Best Accuracy 

Ensemble 1 = RF, GB, XGB Ensemble 4 = RF, AD, XGB 
Ensemble 2 = LR, SVM, KNN Ensemble 5 = GB, SVM, LR 

Ensemble 3 = DT, AD, ANN Ensemble 6 = All classifiers 

 

In Table 4, the use of 4 and 5 features by Ensemble 1 and 5 consistently resulted in the highest 

accuracy of 95.462%. Utilizing six features, the RF classifier achieved the highest accuracy of 95.455%. 

For seven features, RF, Ensemble 1, and 5 achieved the highest accuracy of 95.199%, while using eight 

features, Ensemble 1 consistently achieved an accuracy of 95.733%. Conversely, without feature selection, 

the highest accuracy was obtained by RF, Ensemble 1, and 5, all achieving 95.733%. This accuracy was 

identical to Ensemble 1 with eight features, 0.534% higher than RF, Ensemble 1, and 5 with seven features, 

0.278% higher than RF with six features, and 0.271% higher than Ensemble 1 and 5 with only four features. 

4. Pearson Correlation-Based Feature Selection Compared To Using No Feature Selection 

The application of Pearson Correlation-based feature selection across various classifiers yielded 

results as shown in Table 5. 

Table 5. The accuracy values of classifiers with Pearson Correlation feature selection versus those 

without feature selection.  

No Classifier 
Kavitha 

Research 

Features Without 

Feature 

Selection 4 5 6 7 8 

1 LR - 94,659 94,659 94,659 94,659 94,395 94,659 

2 RF 86,920 91,686 93,592 94,118 95,733 95,192 95,733 

3 KNN - 94,118 94,388 92,525 91,451 91,977 92,809 

4 NB - 94,666 94,666 94,666 94,666 94,666 94,666 

5 SVM 81,670 94,659 94,659 94,659 94,659 94,659 94,659 

6 DT 80,460 90,356 90,085 91,159 92,233 92,511 91,415 

7 AD - 94,403 93,862 93,044 93,855 93,855 93,314 

8 GB - 92,496 92,767 93,030 95,192 95,192 95,192 

9 XGB 85,920 91,970 93,300 93,037 95,192 95,192 95,192 

10 ANN - 94,659 94,659 94,659 94,118 93,848 94,388 

11 Ensemble 1 - 91,963 93,307 94,104 95,469 95,469 95,733 

12 Ensemble 2 - 94,659 94,659 94,659 94,659 94,659 94,659 

13 Ensemble 3 - 90,896 90,889 91,430 92,226 93,044 92,504 

14 Ensemble 4 - 94,659 94,659 94,659 94,659 94,659 94,659 

15 Ensemble 5 - 92,504 93,841 94,644 95,462 95,462 95,733 

16 Ensemble 6 85,120 94,659 94,659 94,659 94,659 94,659 94,659 

*)        = Best Accuracy 

Ensemble 1 = RF, GB, XGB Ensemble 4 = RF, AD, XGB 

Ensemble 2 = LR, SVM, KNN Ensemble 5 = GB, SVM, LR 
Ensemble 3 = DT, AD, ANN Ensemble 6 = All classifiers 
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In Table 5, using 4, 5, and 6 features, the NB classifier consistently achieved the highest accuracy 

of 94.666%. With seven features, the RF classifier obtained the highest accuracy of 95.733%. Utilizing 

eight features, Ensemble 1 achieved the highest accuracy of 95.469%. Conversely, without feature 

selection, the highest accuracy was achieved by RF, Ensemble 1, and Ensemble 5, all recording 95.733%, 

which equaled the accuracy of RF with seven features. This accuracy was 0.264% higher than Ensemble 1 

with eight features and 1.067% higher than NB with only four features. 

5. F Score-Based Feature Selection Compared To Using No Feature Selection 

The application of F Score-based feature selection across various classifiers yielded results, as 

shown in Table 6. 

Table 6. The accuracy values of classifiers with F Score feature selection versus without feature selection.  

No Classifier 
Kavitha 

Research 

Features 
Without 

Feature 

Selection 4 5 6 7 8 

1 LR - 94,659 94,659 94,659 94,659 94,395 94,659 

2 RF 86,920 91,423 94,118 94,915 95,469 95,462 95,733 

3 KNN - 94,118 94,388 92,525 91,451 91,977 92,809 

4 NB - 94,666 94,666 94,666 94,666 94,666 94,666 

5 SVM 81,670 94,659 94,659 94,659 94,659 94,659 94,659 

6 DT 80,460 90,626 90,356 91,693 92,781 91,166 91,415 

7 AD - 94,403 93,862 93,044 93,855 93,855 93,314 

8 GB - 92,496 92,767 93,030 94,922 95,192 95,192 

9 XGB 85,920 91,970 93,300 93,037 95,192 95,192 95,192 

10 ANN - 94,659 94,659 94,659 94,659 93,848 94,388 

11 Ensemble 1 - 92,226 93,848 94,104 95,469 95,469 95,733 

12 Ensemble 2 - 94,659 94,659 94,659 94,659 94,659 94,659 

13 Ensemble 3 - 90,626 90,619 91,970 92,504 93,030 92,504 

14 Ensemble 4 - 94,659 94,659 94,659 94,659 94,659 94,659 

15 Ensemble 5 - 92,233 93,300 94,644 95,462 95,199 95,733 

16 Ensemble 6 85,120 94,659 94,659 94,659 94,659 94,659 94,659 

*)        = Best Accuracy 

Ensemble 1 = RF, GB, XGB Ensemble 4 = RF, AD, XGB 

Ensemble 2 = LR, SVM, KNN Ensemble 5 = GB, SVM, LR 

Ensemble 3 = DT, AD, ANN Ensemble 6 = All classifiers 

 

In Table 6, using 4 and 5 features, the NB classifier consistently achieved the highest accuracy of 

94.666%. With six features, the RF classifier obtained the highest accuracy of 94.915%. Employing seven 

features, both RF and Ensemble 1 achieved the highest accuracy of 95.469%. Using eight features, 

Ensemble 1 also achieved the highest accuracy of 95.469%. Conversely, without feature selection, the 

highest accuracy was obtained by RF, Ensemble 1, and Ensemble 5, all recording 95.733%. This accuracy 

was 0.264% higher than RF and Ensemble 1 with seven features, 0.814% higher than RF with six features, 

and 1.067% higher than NB with only four features. 

 

DISCUSSION 

This study achieved the highest accuracy of 95.733% using KNN Imputer and a combination of 

classifiers without feature selection, surpassing the accuracies reported in previous studies: 86.92% with 

Random Forest and missing value removal [5], 92.3% with McapNet and advanced deep learning 

techniques [17], and 86.8% with Random Forest [20]. This superiority was attained through the utilization 

of ensemble methods and systematic evaluation of feature selection techniques, demonstrating an advantage 

over approaches that simply remove missing values or employ single classifiers. 
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An analysis of the nWBV data distribution revealed that all research samples exhibited below-

normal values. The implementation of KNN Imputer and K-Fold Cross Validation played a crucial role in 

enhancing accuracy, regardless of feature selection. While prior studies achieved a maximum accuracy of 

86.92%, the integration of KNN Imputer, K-Fold Cross Validation, and feature selection increased accuracy 

by 8.813%. Using Information Gain for feature selection reduced the number of features from 9 to 4, 

optimizing computational efficiency and interpretability. Although accuracy slightly decreased from 

95.733% to 95.462% (a reduction of 0.271%), this trade-off is minimal compared to the advantages of 

mitigating overfitting, enhancing model generalizability, and prioritizing the most relevant features for 

robust data analysis. These findings affirm that well-chosen imputation techniques and feature selection 

strategies significantly improve model performance, resulting in more reliable and precise predictions for 

Alzheimer's disease diagnosis. 

However, several limitations should be acknowledged in this study: 

1. Dataset Composition: The dataset may lack diversity in terms of demographic representation, 

including race, ethnicity, and geographical distribution. This limitation could impact the model's 

generalizability to broader populations. 

2. Computational Complexity: The ensemble methods used, while improving accuracy, introduce 

computational overhead, which may affect scalability and real-time application feasibility. 

3. Real-World Applicability: The model's performance in clinical settings remains uncertain due to 

potential discrepancies between the dataset and real-world medical cases. External validation with 

independent datasets is necessary to confirm its robustness. 

4. Feature Selection Bias: The reliance on Information Gain for feature selection may introduce 

bias, potentially overlooking other important predictors. Further research should explore 

alternative feature selection techniques. 

5. Evaluation Metrics and Methodological Assumptions: The chosen metrics and methodologies 

could influence result interpretation and comparability with other studies. Future research should 

assess model consistency across different evaluation frameworks. 

Addressing these limitations will be crucial for developing a more comprehensive and adaptable 

predictive model. Future studies should validate findings across diverse datasets, consider alternative 

modelling approaches, and evaluate real-world clinical integration. 

 

CONCLUSIONS AND RECOMMENDATIONS 

In conclusion, this study achieved an impressive accuracy of 95.733% in diagnosing Alzheimer's 

disease using KNN Imputer and ensemble methods, surpassing previous benchmarks. The application of 

KNN Imputer and K-Fold Cross Validation significantly improved model accuracy. Feature selection 

through Information Gain further enhanced model performance by reducing complexity and improving 

interpretability, with only a minor reduction in accuracy. These findings underline the importance of 

choosing the right imputation and feature selection techniques to reduce overfitting, enhance model 

generalization, and optimize data-driven decision-making. Future studies should focus on validating these 

findings with diverse datasets, exploring additional feature selection methods, and assessing the model’s 

integration into real-world clinical settings. 



Telematika – Vol. 18, No. 1, February (2025) pp. 75-90          ISSN 2442-4528 (Online) | ISSN 1979-925X (Print) 

 

88 http://dx.doi.org/10.35671/telematika.v18i1.3055 

REFERENCES 
 

Abana, E. (2019). A Decision Tree Approach for Predicting Student Grades in Research Project using 

Weka. IJACSA(DOI: 10.14569/ijacsa.2019.0100739). 

Akhtar, T., Gilani, S., Mushtaq, Z., Arif, S., Jamil, M., & Ayazet al., Y. (2021). Effective voting ensemble 

of homogenous ensembling with multiple attribute-selection approaches for improved identification 

of thyroid disorder. Electronics, vol. 10, no. 23(https://doi.org/10.3390/electronics10233026), 3026. 

AlZu’b, S., Zraiqat, A., & Hendawi, S. (2022). Sustainable Development: A Semantics-aware Trends for 

Movies Recommendation System using Modern NLP. International Journal of Advances in Soft 

Computing and Its Applications, 14(3)(https://doi.org/10.15849/ijasca.221128.11), 154-173. 

Ayinla, B., & Oremei, C. (2024). Development of Lr_multi- Cross-validation Model for Prediction of an 

Imbalanced Dataset in Flood Susceptible Area. (https://doi.org/10.21203/rs.3.rs-3826233/v1). 

Barbara Pes. (2021). Learning from High-Dimensional and Class-Imbalanced Datasets Using Random 

Forests. Information, 12(8)(https://doi.org/10.3390/info12080286). 

Basheer, S., Bhatia, S., & Sakri, S. (2021). Computational Modeling of Dementia Prediction Using Deep 

Neural Network: Analysis on OASIS Dataset. IEEE Access , Volume: 

9(https://ieeexplore.ieee.org/document/9380278). 

Beltrán, J., Wahba, B., Hose, N., Shasha, D., Kline, R., , . . . , . (2020). Inexpensive, non-invasive 

biomarkers predict Alzheimer transition using machine learning analysis of the Alzheimer’s Disease 

Neuroimaging (ADNI) database. PLoS ONE, 15(7)(https://doi.org/10.1371/journal.pone.0235663), 

e0235663. 

Biswas, S., & Rajan, H. (2021). Fair preprocessing: towards understanding compositional fairness of data 

transformers in machine learning pipeline. Proceedings of the 29th ACM Joint Meeting on European 

Software Engineering Conference and Symposium on the Foundations of 

Softw(https://doi.org/10.1145/3468264.3468536), 981–993. 

Cao, H., Sarlin, R., & Jung, A. (2020). Learning Explainable Decision Rules via Maximum Satisfiability. 

IEEE Access, Vol 8(DOI: 10.1109/access.2020.3041040), 218180-218185. 

Celard, P., Vieira, A., Iglesias, E., Borrajo, L., , & . (2020). LDA filter: A Latent Dirichlet Allocation 

preprocess method for Weka4. PLoS ONE(https://doi.org/10.1371/journal.pone.0241701). 

Chen, C., Shi, X., Ye, X., Yang, L., , & . (2023). Intrusion detection model based on genetic algorithm 

optimization extreme learning machine of K-fold stratified cross-validation. International 

Conference on Signal Processing and Communication Technology (SPCT 

2022)(https://doi.org/10.1117/12.2673803). 

Chuan, Y., Zhao, C., He, Z., Wu, L., , & . (2021). The Success of AdaBoost and Its Application in Portfolio 

Management. arXiv(https://doi.org/10.48550/arXiv.2103.12345). 

Dashtipour, K., Taylor, W., Ansari,, S., Zahid,, A., Gogate, M., Ahmad, J., . . . Abbai, Q. (2021). Detecting 

Alzheimer’s disease using machine learning methods. EAI(https://hal.science/hal-

03381752/document), HAL Id: hal-03381752. 

Dong, Z., Wang, Q., Ke, Y., Zhang, W., Hong, Q., Liu, C., & et al. (2022). Prediction of 3-year risk of 

diabetic kidney disease using machine learning based on electronic medical records. J Transl Med, 

Vol.20(DOI:10.1186/s12967-022-03339-1), Article number: 143. 

Ebrahimi, K., Jourkesh, M., Sadigh‐Eteghad, S., Stannard, S., Earnest, C., Ramsbottom, R., & et al. (2020). 

Effects of Physical Activity on Brain Energy Biomarkers in Alzheimer’s Diseases. Diseases, 

8(2)(https://doi.org/10.3390/diseases8020018), 18. 

Ge, H., Ma, F., Li, Z., Tan, Z., Du, C., & . (2021). Improved accuracy of phenological detection in rice 

breeding by using ensemble models of machine learning based on uav-rgb imagery. Remote Sensing, 

vol. 13, no. 14(https://doi.org/10.3390/rs13142678), p. 2678. 

Gillani, N., & Arslan, T. (2021). Intelligent Sensing Technologies for the Diagnosis, Monitoring and 

Therapy of Alzheimer’s Disease: A Systematic Review. Sensors, 21(12), 

4249(https://doi.org/10.3390/s21124249). 

Hughes, C., Choi, M., Yi, J., Kim, S., Drews, A., George‐Hyslop, P., & et al. (2020). Beta amyloid 

aggregates induce sensitised TLR4 signalling causing long-term potentiation deficit and rat neuronal 

cell death. Communications Biology, 3(https://doi.org/10.1038/s42003-020-0792-9), 79. 

Istiqoh, A., Qodir, Z., & Ahmad, Z. (2022). Narrative Policy Framework: Presidential Threshold Policy 

Toward the 2024 Election. J. Bina Praja, Volume 14 No 3(DOI: 10.21787/jbp.14.2022.505-516), 

505-516. 



Telematika – Vol. 18, No. 1, February (2025) pp. 75-90 ISSN 2442-4528 (Online) | ISSN 1979-925X (Print) 

 

89 http://dx.doi.org/10.35671/telematika.v18i1.3055 

Kavitha, C., Mani, V., Srividhya, S., Khalaf, O., Romero, C., & . (2022). Early-Stage Alzheimer's Disease 

Prediction Using Machine Learning Models. Front. Public Health, Volume 

10(https://doi.org/10.3389/fpubh.2022.853294). 

Kost, S., Rheinbach, O., & Schaeben, H. (2019). Logistic regression for potential modeling. Proc Appl 

Math and Mech(https://doi.org/10.1002/pamm.201900039). 

Ljubobratović, D., Vuković, M., Bakarić, M., Jemrić, T., Matetić, M., & . (2022). Assessment of Various 

Machine Learning Models for Peach Maturity Prediction Using Non-Destructive Sensor Data. 

Sensors, 22(15)(DOI:10.3390/s22155791), 5791. 

M., S., & G., T. (2023). Alzheimer's disease prediction using machine learning techniques and principal 

component analysis (PCA). Materialstoday: Proseeding, Volume:1 Part 

2(https://www.sciencedirect.com/science/article/abs/pii/S2214785321020757), 182-190. 

Malavika, G., Rajathi, N., Vanitha, V., & Parameswari, P. (2020). Alzheimer Disease Forecasting using 

Machine Learning Algorithm. Biosc.Biotech.Res.Comm, Special Issue Vol 13 No 

11(https://bbrc.in/wp-content/uploads/2021/01/Galley-Proof-004.pdf), 15-19. 

Marzban, E., Eldeib, A., Yassine, I., Kadah, Y., , & . (2020). Alzheimer’s disease diagnosis from diffusion 

tensor images using convolutional neural networks. PLoS ONE, vol. 15, no. 

3(https://doi.org/10.1371/journal.pone.0230409), e0230409. 

Mnguni, L. (2021). Strategies for the Development and Application of Research Frameworks in Sciences 

Education Research. JESR, Vol. 11 No. 6 (2021): November 2021(https://doi.org/10.36941/jesr-

2021-0123). 

Naveed, N., Madhloom, H., & Husain, M. (2021). Breast Cancer Diagnosis Using Wrapper-Based Feature 

Selection and Artificial Neural Network. acs, Vol 17 No.3(https://doi.org/10.23743/acs-2021-18), 

19–30. 

Needham, R. (2022). Alzheimer's Disease: A Caregiver's Guide with Answers to Questions and a Path to 

Spiritual Healing. Columbus, OH: Gatekeeper Press. 

Oh, J., Tannenbaum, A., & Deasy, J. (2022). Automatic identification of drug-induced liver injury literature 

using natural language processing and machine learning methods. 

(https://doi.org/10.1101/2022.08.10.503489). 

Organization, W. H. (2023, March 15). Dementia. (www.who.int) Retrieved May 03, 2024, from 

https://www.who.int/news-room/fact-sheets/detail/dementia 

Paramita, A. S. (2022). Implementation of the K-Nearest Neighbor Algorithm for the Classification of 

Student Thesis Subjects. Journal of Applied Data Sciences, vol. 3, no. 

3(https://doi.org/10.47738/jads.v3i3.66), 128-136. 

Patel, M., Ta, J., & Chou, F.‐S. (2021). Non-Linear Algorithms in Supervised Classical Machine Learning. 

Neonatology Today, 16(7)(https://doi.org/10.51362/neonatology.today/202171674043), 40-43. 

Peavy, G., Jenkins, C., Little, E., Gigliotti, C., Calcetas, A., Edland, S., & et al. (2020). Community Memory 

Screening as a Strategy for Recruiting Older Adults into Alzheimer’s Disease Research. Preprint, 

Version 2(https://doi.org/10.21203/rs.2.19958/v2). 

Pino, R., Mendoza, R., & Sambayan, R. (2021). A Baybayin word recognition system. PeerJ Computer 

Science, 7:e596(https://doi.org/10.7717/peerj-cs.596). 

Sai, P., Rajalakshmi, T., & Snekhalatha, U. (2021). Non-invasive thyroid detection based on 

electroglottogram signal using machine learning classifiers. Proc Inst Mech Eng H, 

235(10)(https://doi.org/10.1177/09544119211028070), 1128-1145. 

Sara, D., Sami, A., Khan Md., H., Asif, K., Mirjam, J., & A S M , F. (2022). Dementia Prediction Using 

Machine Learning. CENTERIS- International Conference on Enterprise Information System/ 

ProjMAn- International Conference on Project Management/ HCist-International Conference on 

Health and SOcial Care Information System and Technologies 2022. -. 

Shiino, A., Shirakashi, Y., Ishida, M., Tanigaki, K., Japanese Alzheimer’s Disease Neuroimaging Initiati, 

& . (2021). Machine learning of brain structural biomarkers for Alzheimer's disease (AD) diagnosis, 

prediction of disease progression, and amyloid beta deposition in the Japanese population. 

Alzheimer's & Dementia: Diagnosis, Assessment & Disease Monitoring, Volume 13, Issue 1 

(https://doi.org/10.1002/dad2.12246). 

Uddin, K., Alam, M., Jannat-E-Anawar, Uddin, M., Aryal , S., & . (2023). A Novel Approach Utilizing 

Machine Learning for the Early Diagnosis of Alzheimer's Disease. Biomedical Materials & Devices, 

Volume 1(DOI: 10.1007/s44174-023-00078-9), 882-898. 

Umar, M., Zhanfang, C., Shuaib, K., Liu, Y., , & . (2024). Effects of Feature Selection and Normalization 

on Network Intrusion Detection. figshare. 

Preprint.(https://doi.org/10.36227/techrxiv.12480425.v3). 



Telematika – Vol. 18, No. 1, February (2025) pp. 75-90          ISSN 2442-4528 (Online) | ISSN 1979-925X (Print) 

 

90 http://dx.doi.org/10.35671/telematika.v18i1.3055 

Winarti, T., Indriyawati, H., Vydia, V., Christanto, F., , & . (2021). Performance comparison between naive 

bayes and k- nearest neighbor algorithm for the classification of Indonesian language articles. IJ-AI, 

Vol 10 No 2(http://doi.org/10.11591/ijai.v10.i2.pp452-457), 452-457. 

Xu, X., K Fairley, C., Chow, E., Lee, D., Zhang, L., & Ong, J. (2022). Using machine learning approaches 

to predict timely clinic attendance and the uptake of HIV/STI testing post clinic reminder messages. 

Sci Rep, 12(1)(DOI:10.1038/s41598-022-12033-7), Article number: 8757. 

Xu, Y., Wu, G., & Chen, Y. (2022). Predicting Patients' Satisfaction With Doctors in Online Medical 

Communities. Journal of Organizational and End User Computing (JOEUC), 

34(4)(http://doi.org/10.4018/JOEUC.287571), 1-17. 

Yıldız, Z., Eren, N., Orçun, A., Gökyiğit, F., Turgay, F., & Celebi, L. (2021). Serum apelin‐13 levels and 

total oxidant/antioxidant status of patients with Alzheimer’s disease. Aging Medicine, 4(DOI: 

10.1002/agm2.12173), 201-205. 

Zhang, L., Sindakis, S., Dhaulta, N., Asongu, S., , & . (2023). Economic Crisis Management during the 

Covid-19 Pandemic: The Role of Entrepreneurship for Improving the Nigerian Mono-Economy. 

Journal of the Knowledge Economy, Version 1(https://doi.org/10.21203/rs.3.rs-1438381/v1). 

Zhang, R., Zeng, M., Zhang, X., Yang, Z., Lv, N., & et al. (2023). Therapeutic Candidates for Alzheimer’s 

Disease: Saponins. International Journal of Molecular Sciences, 

24(13)(https://doi.org/10.3390/ijms241310505), 10505. 

Zhang, S., Lin, H.-C., & Wang, X. (2021). Forecast of E-Commerce Transactions Trend Using Integration 

of Enhanced Whale Optimization Algorithm and Support Vector Machine. Computational 

Intelligence and Neuroscience(https://doi.org/10.1155/2021/9931521), Article ID 9931521. 

Πεππές, Ν., Daskalakis, E., Alexakis, T., Adamopoulou, E., Demestichas, K., & . (2021). Performance of 

machine learning-based multi-model voting ensemble methods for network threat detection in 

agriculture 4.0. Sensors, vol. 21, no. 22(https://doi.org/10.3390/s212274753), 7475. 


