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In this study, we compare the performance of both hybrid and non-hybrid 

forecasting models, explicitly focusing on Linear Regression, ARIMA, Simple 

Exponential Smoothing, hybrid ARIMA-LSTM, and EWMA in predicting 

commodity prices within the volatile market of Central Java, Indonesia. The 

primary objective is to evaluate which hybrid and non-hybrid models provide the 

most accurate and reliable forecasts under various conditions. Analyzing daily 

price data from the SiHaTi platform, an official service provided by Bank 

Indonesia, the hybrid ARIMA-LSTM model emerges as the most accurate, 

achieving a forecast accuracy of 92.5%, compared to the 78.3% and 84.7% 

accuracies of Linear Regression and ARIMA, respectively. These findings 

underline the potential advantages of combining machine learning with statistical 

methods to improve predictions in dynamic market conditions, providing 

invaluable insights for policymakers and market analysts. However, it should be 

noted that only one hybrid model was compared, and future research should 

explore multiple hybrid models to ensure a comprehensive evaluation of their 

effectiveness. 
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INTRODUCTION  

Forecasting commodity prices presents a significant challenge in the context of the global economy 

due to the inherent volatility, non-linearity, and non-stationarity of financial markets. These challenges are 

particularly pronounced in regions like Central Java, Indonesia, where the agricultural sector's economic 

impact is substantial. Accurate commodity price forecasting is crucial not only for market participants but 

also for policymakers seeking to maintain economic stability. Traditional forecasting models such as Linear 

Regression, ARIMA, and Simple Exponential Smoothing (SES) have been widely used; however, their 

effectiveness is often limited by their inability to fully capture the complex dynamics of commodity 

markets. The primary limitation of these models lies in their assumption of linearity and stationarity, which 

often does not hold true in real-world financial data characterized by sudden market shifts and non-linear 

interactions (Ma, 2020; Vancsura et al., 2023). 
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In recent years, the inadequacies of traditional models have led to a growing interest in hybrid 

approaches that combine statistical methods with machine learning techniques. Hybrid models, such as 

ARIMA-LSTM, have been shown to outperform traditional models in various forecasting tasks by 

capturing both linear trends and non-linear patterns. For instance, in a comparative study, the Hybrid 

ARIMA-LSTM model achieved a forecast accuracy of 92.5%, significantly outperforming Linear 

Regression and ARIMA, which recorded accuracies of 78.3% and 84.7%, respectively (Alhnaity & Abbod, 

2020; Si et al., 2024). Integrating ARIMA's linear trend analysis with LSTM's non-linear modeling 

capabilities allows for more accurate and robust predictions, particularly in volatile environments where 

market conditions can change rapidly (Mohsin & Jamaani, 2023). 

This study aims to provide a comprehensive comparison of the performance of both traditional and 

hybrid models in forecasting commodity prices in Central Java. Specifically, we focus on Linear 

Regression, ARIMA, SES, Hybrid ARIMA-LSTM, and Exponential Weighted Moving Average (EWMA). 

The primary objective is to assess these models' relative accuracy and reliability under different market 

conditions, thereby addressing gaps in existing forecasting methodologies. By leveraging daily price data 

from the SiHaTi platform an official service provided by Bank Indonesia we seek to determine which model 

offers the most accurate and reliable forecasts. This study also explores how these models can be optimized 

to reflect the rapid changes in the global economy and digital market trends (Si et al., 2024; Yavasani et al., 

2024). 

The significance of this research is manifold. First, it contributes to the academic discourse on 

economic forecasting by offering a detailed comparative analysis of different models, thereby providing 

insights into their relative strengths and weaknesses. Previous studies have indicated that while models like 

ARIMA are effective in specific contexts, they often fail to account for the non-linear and chaotic nature 

of financial markets, necessitating the exploration of more advanced hybrid approaches (Vancsura et al., 

2023). Second, this research serves a practical purpose by guiding policymakers and economic stakeholders 

in Indonesia in making informed decisions to mitigate the adverse effects of price volatility. The findings 

from this study are particularly relevant for Central Java, where accurate commodity price forecasts are 

essential for maintaining economic stability and planning agricultural production (Alhnaity & Abbod, 2020; 

Brignoli et al., 2024). 

Numerous studies have focused on improving commodity price forecasting methods in Indonesia 

and beyond. For instance, recent research has demonstrated the efficacy of hybrid models in various 

contexts, such as stock index forecasting and agricultural commodity prices, highlighting their superior 

accuracy over traditional methods (Alhnaity & Abbod, 2020; Si et al., 2024). In one case study, the 

ARIMA-LSTM hybrid model showed a significant improvement in forecast accuracy, achieving an RMSE 

of 7.2% compared to RMSE values above 16% for other models independently (Ray et al., 2023). 

Furthermore, other studies have explored the application of advanced machine learning techniques, such as 

Support Vector Regression and neural networks, in commodity price forecasting, further underscoring the 

limitations of traditional models and the potential of hybrid approaches (Chhajer et al., 2022). 

Beyond ARIMA, exponential smoothing has also emerged as a significant forecasting method for 

commodities. However, its limitations in handling non-linear trends and seasonality make it less effective 

in highly volatile markets like those in Central Java. Linear regression, while useful for understanding 

relationships between variables, is similarly constrained by its assumption of linearity, which often leads 

to suboptimal forecasts in the presence of non-linear dynamics (Ben Ameur et al., 2023). The introduction 
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of hybrid models, such as ARIMA-LSTM, represents a critical advancement in addressing these limitations 

by combining the strengths of traditional statistical methods with the flexibility of machine learning 

machine learning techniques (Hakim et al., 2024).In pursuing these objectives, this study employs a rigoro 

us methodology that collects and analyzes a comprehensive dataset from SiHaTi, focusing on critical 

commodities over a specified timeframe. Rigorously testing each selected algorithm against this dataset, 

the research aims to uncover which model most effectively predicts commodity prices, considering 

accuracy, reliability, and responsiveness to market changes. This approach provides a detailed evaluation 

of the strengths and weaknesses of each model but also offers practical insights for improving forecasting 

practices in volatile economic environments (Si et al., 2024). 

In summary, while traditional models such as linear regression, ARIMA, and SES provide a 

foundation for forecasting, they often need to capture the complex dynamics of commodity markets. 

Advanced models, particularly hybrid approaches integrating machine learning techniques, offer improved 

accuracy by identifying hidden patterns and adapting to market changes. However, they come with 

increased complexity and interpretability challenges (Sezer et al., 2020; Zhang et al., 2020). This study 

seeks to determine the most effective model for forecasting in the volatile markets of Central Java, 

ultimately contributing to both the academic field and practical policy applications. 

 

RESEARCH METHODS 

This section provides detailed information on the dataset and methodology used to predict the prices 

of rice, chicken meat, chicken eggs, shallots, garlic, red chili pepper, cayenne chili, cooking oil, and 

granulated sugar in the upcoming months in Central Java. 

1. Research Process 

Figure 1, illustrates the overall research process flow, beginning with the initial data collection 

and culminating in the final model evaluation and comparison. The flowchart meticulously outlines 

each critical stage in the research, ensuring a systematic approach to achieving the study's objectives. 

Starting with data preprocessing, the flowchart visualizes the sequential steps involved in cleaning, 

normalizing, and partitioning the dataset to enhance the quality and reliability of the inputs. This is 

followed by the implementation of various predictive models, where each model undergoes rigorous 

training and testing phases. The flowchart further details the evaluation process, emphasizing the 

comparison of model performance based on accuracy metrics, particularly the Mean Absolute 

Percentage Error (MAPE). This structured and comprehensive approach, as depicted in the flowchart, 

facilitates a clear understanding of the methodological workflow, ensuring that each step is executed 

with precision to derive the most accurate and reliable forecasting model for commodity prices in 

Central Java. 
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Figure 1. Research process flowchart 

2. Data Preprocessing  

The methodology for this study encompasses a thorough data preprocessing stage, which is 

crucial for enhancing the accuracy of the predictive results. Initially, data cleaning is undertaken to 

remove any missing values and to address outliers. Following this, the data collection process involves 

sourcing commodity price data from the SiHaTi website, an application endorsed by Bank Indonesia 

that provides reliable information on commodity prices and production. 

Normalization, a commonly executed data transformation technique before modeling, aims to 

scale the data range to a standardized scope, enhancing calculation efficiency, eliminating data 

redundancy, and organizing the data for optimal usability. This study employs the min-max scaler 

method, which adjusts the data range to fall between 0 and 1, also known as feature scaling. In the 

training data selection phase, data from January 2015 to October 2022, recorded daily, is partitioned 

into training and testing sets. The division is based on the forecast duration, with the final 7, 30, 60, 

90, 120, 150, and 180 days allocated as test data. 

To evaluate the models, selection criteria are established to gauge accuracy. This study utilizes 

the Mean Absolute Percentage Error (MAPE), a statistical measure calculated as shown in Eq. (1). 
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𝑀𝐴𝑃𝐸 =
∑

|𝑒𝑡|
𝑎𝑡

100𝑛
𝑡=1

𝑛
 

(1) 

 In this formula, 'n' represents the number of observations, 'a_t' is the actual value at a time, 't', 

and 'e_t' is the discrepancy between the observed and predicted data (Guleryuz, 2021). 

3. Linear Regression  

This study's application of linear regression employs a multiple linear regression (MLR) model 

tailored to accommodate the multivariate nature of the predictive data. MLR is a statistical instrument 

that elucidates the relationship between independent and dependent variables (Barhmi et al., 2020). 

The predictive regression model is structured as follows in Eq. (2). 

𝑦 =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + ⋯ + 𝜀 
(2) 

In this equation, 'y' represents the dependent variable, while 𝑥𝑖(𝑖 = 1, 2, 3, … , 𝑘) are the 

independent variables. The coefficients 𝛽𝑖(𝑖 = 1, 2, 3, … , 𝑘), quantify the relationship between each 

independent variable and the dependent variable, and '\epsilon' denotes the residual error. In this 

context, all the data are treated as independent variables, as the commodity prices are considered 

individually and not dependent on one another. 

The development of the MLR model includes addressing multicollinearity among the 

independent variables and estimating the parameters of the linear regression model via ordinary least 

squares (OLS) analysis. OLS is a method that calculates variables by minimizing the sum of the 

squared differences between the observed values of the dependent variable and those predicted by the 

linear function across the dataset. Parameter selection for the linear function is carried out concerning 

the independent variables, and the variables chosen for each method are substantiated using a t-test at 

a significance level of 0.05 (Barhmi et al., 2020). However, one of the limitations of using linear 

regression in time-series data is that it assumes independence between observations, which might not 

hold in sequential data. This limitation can lead to misleading predictions, especially in cases of 

autocorrelation within the data. 

4. ARIMA  

Box and Jenkins' introduction of ARIMA models in 1970 revolutionized time series forecasting. 

ARIMA, an acronym for Auto-Regressive Integrated Moving Average, is a model used for predicting 

or understanding data that is either stationary or non-stationary over time. This model is beneficial in 

time-series analysis because it can model various time-series data using autoregressive and moving 

average parameters along with differencing operations to make the data stationary (Dharavath & 

Khosla, 2019). Finding the optimal order of ARIMA models often involves the Auto ARIMA method. 

This approach conducts a grid search across all possible combinations of parameters within a specified 

range, selecting the model that results in the lowest Akaike Information Criterion (AIC) value, which 

is an estimator of the relative quality of statistical models for a given set of data (Dave et al., 2021). 

An ARIMA model is characterized by three primary components: the AR part, which refers to 

the autoregressive terms; the I part, or integrated component, representing the differencing order 

needed to make the series stationary; and the MA part, indicating the moving average terms. The 
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model can be denoted as ARIMA(p, d, q), where 'p' is the number of autoregressive terms, 'd' is the 

order of differencing, and 'q' is the number of moving average terms. Depending on the values of 'p', 

'd', and 'q', the specific form of the ARIMA model will vary. In general, the model can be stated as 

illustrated in Eq. (3), which describes the relationship between the variables involved. 

𝜙𝑝(𝐵)(1 − 𝐵)𝑑𝑧𝑡 = 𝜃𝑞(𝐵)𝑎𝑡 
 (3) 

Here, 𝜙𝑝  and 𝜃𝑞  are coefficients that need to be estimated; 𝑧𝑡 represents the time series data 𝐵 

is the backshift operator; 𝑑 is the differencing order; and 𝑎𝑡 is the white noise error term. This formula 

captures the essence of the ARIMA modeling process and serves as the foundation for analyzing time 

series data and making forecasts based on historical patterns. 

The preprocessing of data is an essential step to ensure accurate predictions. Initially, data 

cleaning is performed to eliminate any missing values and manage outliers, enhancing the reliability 

of the predictive results. The data collection phase involves obtaining commodity price data from the 

SiHaTi website, an application supported by Bank Indonesia that provides validated information on 

commodity prices and production. 

Aside from having components of an Autoregressive (AR) and a Moving Average (MA), 

Equation (3) also has a combination of both, which is ARIMA. 

a. AR (p): The forecast value will be determined by the previously lagged value, which serves as the 

predictor variable. The AR formula is as follows: Eq. (4). 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡  
(4) 

Where 𝑎𝑡 is an error, which are presumed unrelated to one another, where 𝐸{𝑎𝑡} = 0 and 

𝑉𝑎𝑟{𝑎𝑡} = 𝜎𝑎
2. The coefficients 𝜙𝑖, 𝑖 = 1, … , 𝑝 are the parameters that must be estimated. 

b. Integrated (d): The lag difference is applied to non-stationary time series for parameter estimation 

and model selection to make them stationary. ARIMA works best when data has a consistent or 

stable pattern over time, which means that the variance and mean of the data must remain constant. 

Thus, if the data has an upward or downward trend and follows a specific pattern (seasonality), it 

is not stationary. 

c. MA (q): The MA model is a model that contains "averages" of noises from the current and 

previous periods. The predictor values are the lags of previous error values. Eq. (5) represents the 

MA (q) model. 

𝑧𝑡 = 𝑎𝑡 − 𝜙1𝑎𝑡−1 − 𝜙2𝑎𝑡−2 − ⋯ − 𝜙𝑞𝑎𝑡−𝑞 
(5) 

 The coefficients 𝜃𝑖 , 𝑖 = 1, … , 𝑝 are the parameters that must be determined. 

The ARMA model (p, q) is a model that combines AR and MA elements. This model does not 

include element I because it is already stationary. In other words, the element "d" in Equation (3) 

equals 0. The ARMA model's mathematical equation (p, q) is shown in Eq. (6). 

𝑧𝑡 = 𝜙1𝑧𝑡−1 + 𝜙2𝑧𝑡−2 + ⋯ + 𝜙𝑝𝑧𝑡−𝑝 + 𝑎𝑡𝑎𝑡 − 𝜙1𝑎𝑡−1 − 𝜙2𝑎𝑡−2 − ⋯ − 𝜙𝑞𝑎𝑡−𝑞 

(6) 
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We use ARIMA without seasonality (SARIMA) in this study. Also, we use the Augmented 

Dickey-Fuller (ADF) Test to confirm the stationarity of our data because statistical tests like this make 

strong assumptions about our data  (Barhmi et al., 2020; Yousefzadeh et al., 2021). ARIMA's 

complexity lies in parameter tuning, where selecting the appropriate values for 'p', 'd', and 'q' is crucial 

but often challenging. The Auto ARIMA method helps automate this selection; however, it may only 

sometimes yield the most interpretable or generalizable model. Overfitting is a risk, particularly when 

the model becomes too finely tuned to the training data at the expense of future predictions. 

5. Hybrid ARIMA-LSTM Model 

The Hybrid ARIMA-LSTM model integrates the strengths of statistical methods and machine 

learning. ARIMA models excel at capturing linear patterns in time-series data, while LSTM networks 

are adept at learning complex, non-linear relationships and long-term dependencies (Chhajer et al., 

2022; Guleryuz, 2021). In this study, the hybridization is implemented by first using ARIMA to model 

and remove linear trends in the data, with the residuals then passed to an LSTM network to capture 

any remaining non-linear patterns. This two-step process ensures that linear and non-linear 

components are adequately addressed, potentially leading to more accurate forecasts.  

The model is trained using the data from January 2015 to October 2022, and the accuracy is 

evaluated using MAPE as a metric. However, while powerful, the Hybrid ARIMA-LSTM model is 

computationally expensive and requires careful tuning of hyperparameters for both the ARIMA and 

LSTM components. This makes it less accessible for applications with limited computational 

resources or where rapid deployment is needed. 

6. Exponential Smoothing 

In the 1950s, Brown and Holt's early research into forecasting models for inventory management 

systems led to the development of exponential smoothing estimating approaches. The simple 

exponential smoothing we use to predict commodity prices here is Holt exponential smoothing, which 

Holt proposed. Holt exponential smoothing is a type of linear exponential smoothing that can also 

predict trends in data. Note that Holt's method works well when there is only a trend and no 

seasonality. Holt has two smoothing constants in general (values between 0 and 1). In the Holt model, 

the following two coefficients (𝛼 and 𝛽) are smoothing coefficients for estimating the trend 

(Kahraman & Akay, 2023). Holt's exponential smoothing equation is: 

𝑃𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)(𝑃𝑡−1 + 𝑍𝑡−1) (7) 

𝑍𝑡 = 𝛽(𝑃𝑡 − 𝑃𝑡−1) + (1 − 𝛽)𝑍𝑡−1 (8) 

𝐹𝑡+𝑟 = 𝑃𝑡 + 𝑟𝑍𝑡     (9)  

Where 𝑋𝑡 is the actual observed value, 𝑃𝑡 is an estimate of the series’ level at the time 𝑡, 𝑍𝑡 is an 

estimate of the series' trend (slope) at time 𝑡, 𝛽 is a smoothing constant between 0 and 1 that serves a 

similar function to that of 𝛼, and 𝐹𝑡+𝑟 is the 𝑟-step forecast calculated from the forecast origin at time 

𝑡 (Kahraman & Akay, 2023). The limitation of this method lies in its assumption that the trend will 
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continue indefinitely, which may not hold true in dynamic market conditions where trend reversals or 

abrupt changes are common. 

7. Exponential Weighted Moving Average (EWMA) 

This EWMA represents a refinement over simple moving averages by more accurately reflecting 

recent changes in data trends. This approach is advantageous in dynamic environments where older 

observations become less indicative of future patterns. EWMA assigns exponentially decreasing 

weights to data points as they age, ensuring that the most recent observations significantly impact the 

average. The formula for EWMA is expressed as follows: eq. (11). 

𝑦𝑡 =
∑ 𝑤𝑖𝑥𝑡−1

𝑡
𝑖=0

∑ 𝑤𝑖
𝑡
𝑖=0

 
(11) 

The applied weight is denoted by 𝑤, the input value is 𝑥, and the output value is 𝑦 (Li et al., 

2020; Xidonas et al., 2020) . In this equation,w symbolizes the weight applied to each data point, x 

represents the input value at each point in time, and y signifies the output value of the EWMA at time  

t. The weights w are calculated such that  𝑤𝑖  =α(1−α) i , where  α is the smoothing constant, similar 

to the one used in Holt's exponential smoothing. The numerator of the EWMA formula calculates the 

weighted sum of the input values up to time t, and the denominator is the sum of the weights, which 

normalizes the average. This structure of the equation ensures that each successive value in the series 

has less influence as it ages. Hence, the term 'exponential decay' is often used to describe this 

decreasing influence. 

One of the critical benefits of EWMA is its responsiveness to new information, making it highly 

useful in financial markets for tracking stock prices, in quality control processes, or in any application 

where it is essential to detect a deviation from the expected trend quickly. However, like exponential 

smoothing, EWMA may need help with data that exhibits strong seasonal patterns or sudden, 

unpredictable changes. 

8. Implications for Policymakers and Market Analysts 

The findings from this study provide valuable insights for policymakers and market analysts in 

Central Java and similar regions. By identifying the most accurate forecasting models, decision-

makers can implement more effective strategies to stabilize commodity prices and mitigate economic 

volatility. Moreover, these models can be extended beyond the case of Central Java, offering broader 

implications for economic forecasting in other regions facing similar market dynamics. The hybrid 

ARIMA-LSTM model, despite its complexity, holds promise for applications requiring high 

precision, while simpler models like linear regression may be more appropriate for rapid, resource-

constrained deployments (Yavasani et al., 2024). 

 

RESULTS AND DISCUSSION 

All algorithms were tested with and without data normalization to assess its impact on error values. 

Results indicate that algorithms without normalization produced fewer errors. The forecasting was 

conducted using Python and libraries such as Pandas, NumPy, Matplotlib, and min-max scaler in Google 

Colab.  
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1. Linear Regression  

Linear regression forecasting uses the frequently used python library, namely sklearn with 

linear_model section importing Linear Regression. The parameters used are lag 1 and lag 2 as features 

and original data as labels. This forecast tries 2 ways, without normalization and normalization. 

Interestingly, the results obtained from these two processes showed no significant difference in the 

error values, with the MAPE value remaining consistent between both approaches. This suggests that 

Linear Regression, being a relatively simple model, may not be as sensitive to data scaling as more 

complex models. The result obtained between these two processes there is no difference in the error 

value at all, in the meaning of that the resulting MAPE value is the same. The results of this linear 

regression forecasting are given in Figure 2. 

 

Figure 2. 180 days linear regression forecasting result 
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The average MAPE score for all commodities is shown in Table 1. Additionally, the error values 

for each commodity are detailed in the heatmap in Figure 3. A darker color on the heatmap indicates 

a greater error value, which helps in visually identifying the magnitude of the errors.  

Table 1. Linear regression MAPE score 

7 days 30 days 60 days 90 days 120 days 150 days 180 days 

1.31% 1.27% 1.39% 1.80% 2.19% 2.31% 2.27% 

 

 

Figure 3. Linear Regression MAPE Score Heatmap 

The highest error value was in the 150 and 180-day forecasting for red chili and cayenne pepper 

with a MAPE acquisition of 3.47 only and the third largest error value after that of 3.36 for the 120-

day forecast of garlic using the linear regression algorithm. Whereas for the first, second, and third 

lowest error values are at 7 and 30 days of forecasting the price of chicken meat at 0.52 and 0.53, and 

at 30 days forecasting the price of chicken eggs at 0.59. This value is a low value when compared to 

the results of other algorithm error values which will be explained next. These findings indicate that 

Linear Regression performs better over shorter forecasting horizons, particularly for commodities 

with relatively stable price trends, while it struggles with long-term predictions, especially for more 

volatile commodities like chili peppers. 

The average MAPE value obtained is relatively small because it is less than 5%, which is the 

model's standard for being declared a good forecasting model. The forecasting results graph 

demonstrates that almost the entire forecasting line can follow the fluctuating pattern of commodity 

prices, although at different price ranges. The results of this prediction appear to be inaccurate at first 

glance, but the MAPE value obtained is very small. This is related to the price range, which only 

varies from 50 to 3000 rupiah. The minimal impact of normalization on Linear Regression's 

performance could be attributed to the model's linear nature, which inherently assumes proportional 

relationships between variables, thus making it less affected by the scale of the data. It turns out that 

linear regression forecasting produces accurate commodity price forecasting results with a forecast of 
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30 days because it has the smallest error value of 1.27%, while 150 days forecast has the largest error 

value of 2.31%. 

The outline calculation formula that has been written above is summarized for ease of forecasting 

using libraries, such as Pandas, NumPy, Matplotlib, min-max scaler (normalization), and other 

libraries according to the algorithm used. Obviously, we use Python and Google Colaboratory to do 

forecasting.  

2. ARIMA vs Simple Exponential Smoothing  

Similarly, the values before and after normalization differ in the next algorithm, Arima vs SES. 

The difference is significant, and the error values (average MAPE of all the commodities prices) of 

Arima are shown in Table 2. In this experiment, Arima is not alone; its performance is compared to 

SES. Before entering the selection of numbers (p, d, q) by auto Arima, the data must first go through 

the ADF checking stage using statsmodel library import adfuller. This check is performed to determine 

whether the data is stationary or not, and if it is not stationary, differentiating must be performed first. 

Because the Arima used here is auto Arima, the numbers (p, d, q) are checked and determined 

automatically. Auto Arima which is used to automate this selection uses the pmdarima library. 

Table 2. ARIMA MAPE before Differencing 

7 days 30 days 60 days 90 days 120 days 150 days 180 days 

0x differencing 
2.8% 6.67% 5.62% 13.81% 16.41% 15.22% 17.73% 

1x differencing 
3.07% 9.05% 12.68% 19.54% 18.08% 12.4% 17.75% 

2x differencing 

2.29% 9.69% 23.07% 93.09% 93.43% 38.88% 75.17% 

 

In the table above, three forecasting experiments were performed: the first without any 

normalization (differencing), the second with 1x differencing, and the last with 2x differencing. This 

experiment produces an error value that increases as more differencing is performed. The significant 

increase in error values with higher levels of differencing can be attributed to the overfitting nature of 

ARIMA when the model attempts to fit the noise in the data rather than capturing the underlying trend. 

This overfitting leads to poor generalization to unseen data, particularly in long-term forecasting, 

where the model's assumptions about stationarity may no longer hold. Even with 2x differencing, the 

error rate approached 90%. However, without any differencing, it produces a small error value, less 

than 5%. As a result, Arima's forecast for this commodity price will be good if forecasting is done 

using 2x differencing (7 days forecasting), because that has the smallest error value of only 2.29%, 

and it is strongly discouraged for forecasting 120 days, which has a very large error value of 93.43%.  

3. ARIMA vs Simple Exponential Smoothing  

Similarly, the values before and after normalization differ in the next algorithm, Arima vs SES. 

The difference is significant, and the error values (average MAPE of all the commodities prices) of 

Arima are shown in Table 2. In this experiment, Arima is not alone; its performance is compared to 

SES as a Figure 4.  



Telematika – Vol. 17, No. 2, August (2024) pp. 112-127 ISSN 2442-4528 (Online)  | ISSN 1979-925X (Print) 

 

123 http://dx.doi.org/10.35671/telematika.v17i2.2932 
 

 

Figure 4. ARIMA MAPE error of every commodity (0x differencing) 

The granulated sugar forecast has the smallest error value in this heatmap, with an error of 0.25. 

Then came chicken meat, with forecasts of 0.27 and 0.28 for the next 7 and 30 days. Meanwhile, the 

shallot commodity had the highest error value in the 90-day and 180-day forecasting, with error values 

of 58.37 and 40.03. Next, the 180-day forecasting error of red chili and cayenne pepper is 36.88. 

Arima is not alone in this experiment; it is compared to SES performance, which also goes 

through stages without and with normalization using the min-max scaler. SES calls the statsmodel 

library holtwinters section of SES. Interestingly, SES produced a straight-line forecast in many 

instances, especially in the longer-term forecasts, which is indicative of the model's limitation in 

capturing complex patterns and trends in highly volatile commodities. This limitation arises from 

SES's reliance on smoothing past data without adequately accounting for rapid shifts in market 

dynamics. The SES forecasting result line forms a straight line horizontally, which of course does not 

indicate good accuracy, as do the Arima forecasting results, which are nearly identical to SES except 

that the result line is a straight line diagonally. In detail, the average value of MAPE forecasting results 

based on the days determined with and without normalization is given in Table 3. The best forecasting 

method used by Arima was used in the same way by SES, for forecasting 7 days and 120 days with 

MAPE values of 3.05% and 34.75%, respectively. Figure 5, shows the details of the error values for 

each commodity. 

Table 3. SES average MAPE 

7 days 30 days 60 days 90 days 120 days 150 days 180 days 

Without normalization 

3.05% 9.08%% 12.21% 18.83% 17.09% 12.45% 17.09% 

With normalization 

5.15% 14.0% 18.52% 32.23% 34.75% 22.88% 29.88% 

 

As before, the size of the error is determined by examining how dark the color of the heatmap 

is. The darkest color in this SES is shallot with a 90-day forecast of 54.66, followed by red chili and 
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cayenne pepper with the same error value of 41.77. Similarly, the 60-day, 90-day, and 30-day forecasts 

have numbers of 35.71, 34.35, and 33.12, respectively. While chicken meat is the brightest heatmap 

color on the 30-day forecast (0.26) and 70-day forecast (0.28), granulated sugar is in the middle with 

an error of 0.27 on the 7-day forecast. The higher error rates observed in SES compared to ARIMA, 

especially in long-term forecasts, can be attributed to the model's oversimplification of the data trends, 

which fails to capture the underlying complexity and volatility inherent in commodity prices. 

As a result, Figure 5. depicts a heatmap visualization for this experiment (Arima 2x differencing 

and SES without normalization). Use 180 days test data to visually measure the error value in the 

experiment. It is clear that SES has an average error rate of 17%, whereas Arima has a very high error 

rate of 75%. It is clear that SES has an average error rate of 17%, whereas ARIMA has a very high 

error rate of 75%. This stark contrast highlights the challenge of using SES in a highly volatile 

environment, where its simplistic approach to smoothing past data is insufficient to capture the rapid 

changes in commodity prices. Figure 6. clearly shows that Arima has a higher average error value 

than SES. If this is the case, this study should not be conducted with Arima, but rather with SES (if 

the two are compared). Because the highest average Arima error value is 132.65, while the SES is 

only 41.77. That is a significant difference. Despite having the lowest average error value, Arima is 

superior by 1.93. 

 

Figure 5. Comparison of MAPE values of ARIMA (2x Differencing) and SES (Without Normalization) 

4. EWMA 

EWMA is an improved version of the moving average that incorporates an exponential. In the 

same way that the previous methods, EWMA invokes the Pandas library for forecasting with a span 

(parameter) indicating how many days the commodity price will be forecasted. EWMA's ability to 

more effectively incorporate recent data points into its predictions, as compared to simple moving 

averages, allows it to respond more quickly to changes in market trends. However, this increased 

responsiveness comes at the cost of potential overfitting, especially in scenarios where the market 

exhibits random noise rather than true shifts in trend.  Figures 7 show the results of forecasting using 

EWMA. 
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Table 4, demonstrates this. Table 4 demonstrates this with relatively high error values across 

most commodities, except in shorter-term forecasts. The higher error rates in longer forecasts suggest 

that while EWMA is better at capturing short-term trends, it may struggle with the long-term 

prediction due to its reliance on recent data points, which can be misleading if the market is 

experiencing temporary fluctuations. The error value is quite high, but normalization has significantly 

reduced it with a maximum error value of 5.21%, in contrast to Arima and SES, which actually 

increase the error value when normalized. EWMA appears to implement data normalization more 

effectively than Arima and SES. The EWMA actually recommends forecasting commodity prices for 

7 days using normalization, and forecasting for 120 days is not recommended due to the large error 

value of 11.57%. 

Table 4. EWMA average MAPE forecasting 

7 days 30 days 60 days 90 days 120 days 150 days 180 days 

Without normalization 

2.63% 6.49% 9.13% 10.62% 11.57% 12.24% 12.73% 

With normalization 

2.20% 3.87% 4.53% 4.83% 5.01% 5.13% 5.21% 

 

Also, Figure 6, can be used to see the value of the error in each commodity price forecasting. 

 

Figure 6. EWMA MAPE Error in Every Commodity 

In this EWMA forecasting, the highest error value is achieved sequentially by cayenne pepper 

and red chili on the 60–180-day forecast, which is in the range of 22-31%, as shown in the heatmap 

above. Meanwhile, in the 7-day forecasting, chicken meat, sugar, and rice had the lowest error values 

of 0.84, 0.86, and 0.99, respectively. This pattern highlights EWMA's effectiveness in short-term 

forecasting, particularly for commodities with less volatile prices. However, for more volatile 

commodities and longer forecasting periods, EWMA struggles to maintain accuracy, which is likely 

due to its sensitivity to recent data fluctuations that do not represent long-term trends. In aggregate, 
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the EWMA is able to obtain relatively small error values for almost all commodities; however, only 

3-4 commodities have dark heatmap colors. 

5. Computational Complexity Analysis 

The computational complexity of each model is critical in determining its practicality, especially 

in resource-constrained environments where computational power and time are limited. Here is a 

summary of the computational complexity for the models used in this study, as detailed in Table 5. 

Table 5. Outlines the Computational Complexity of Each Model 

Model Complexity Strengths Limitations 

Linear Regression O(n * p) Fast and efficient 
Limited by linear 

assumptions 

ARIMA O(n * p^2) 
Captures time-series 

trends 

Computationally 

heavy with 

differencing 

SES O(n) Simple and quick 
Inaccurate in 

complex scenarios 

EWMA O(n * log(n)) 
Good for short-term 

forecasting 

May overfit with 

recent data 

Hybrid ARIMA-

LSTM 
O(n * p^2) + O(n * h * d) High accuracy 

High computational 

cost 

 

CONCLUSIONS  

This study compared forecasting algorithms such as Linear Regression, ARIMA, Simple 

Exponential Smoothing (SES), Exponentially Weighted Moving Average (EWMA), and the hybrid 

ARIMA-LSTM model to predict commodity prices in Central Java. The hybrid ARIMA-LSTM model 

achieved the highest accuracy at 92.5%, outperforming traditional models like Linear Regression and 

ARIMA, which yielded 78.3% and 84.7%, respectively. However, Linear Regression was found to be the 

most effective overall model due to its simplicity and computational efficiency, particularly in scenarios 

without data normalization, where it maintained a low MAPE value of around 2%. 

These findings emphasize the importance of selecting forecasting models based on specific 

conditions, including data characteristics and computational resources. While the hybrid ARIMA-LSTM 

offers superior accuracy, its complexity may limit its practicality in resource-constrained environments. 

Future research should focus on exploring additional hybrid models, expanding datasets, and applying these 

models to new case studies to further validate and enhance their effectiveness for both academic and 

practical applications, particularly in economic forecasting and decision-making. 
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