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Plant disease detection studies disease attacks in plants detected on the leaves 

using computer vision. However, some plant disease detection solutions still 

utilize cloud computing, where the problems include slow processing times and 

misuse of data privacy. This study aims to evaluate the performance of 

convolutional neural network (CNN) pruning in edge computing-based plant 

disease detection. We use Kaggle's plant disease image dataset, which contains 

three corn diseases. We also created an edge computing system architecture for 

plant disease detection utilizing the latest communication technology and 

middleware. Next, we developed an optimal CNN model for plant disease 

detection using grid search. We pruned the CNN model in the final step and tested 

its performance. In this step, we developed a novel normalized-geometric mean 

(NG-mean) method for accuracy loss optimization. The test results show that class 

weights can optimize specificity and g-mean on the imbalanced dataset, with 

values of 0.995 and 0.983, respectively. The grid search results then optimize the 

optimization method's hyperparameters, learning rate, batch size, and epoch to 

achieve the highest accuracy of 0.947. Applying pruning produces several models 

with variations in sparsity and scheduling methods. We used the new NG-mean 

method to find the best compressed model. It had constant scheduling, 0.8 

sparsity, a mean accuracy loss of 1.05%, and a CR of 2.71×. This study enhances 

the efficiency and privacy of plant disease detection by utilizing edge computing 

and optimizing CNN models, leading to faster processing and better data security. 

Future work could explore the application of the novel NG-Mean method in other 

domains and the integration of additional plant species and diseases into the 

detection system.  
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INTRODUCTION 

Plant disease detection is a branch of science that studies disease attacks in plants detected through 

observation of the plant's leaves, which can be done directly, through the lab, or by computer vision (Yucky 

et al., 2021). Blight, common rust, and gray leaf spots are a plant disease that attacks plant tissue and is 

caused by a fungus, which can cause crop failure (Anim-Ayeko et al., 2023). Several studies in the field of 

artificial intelligence (AI) has been used to tackle crop failure, for example a research (Dagwale & Adakane, 

2023) that can detect several types of plants and diseases with high accuracy. Deep learning methods, 

including convolutional neural networks (CNN), can detect blight on leaves of plants with good 
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performance (Al-Adhaileh et al., 2023). However, some plant disease detection solutions still detect in the 

cloud, where the image is sent to the internet first (Shrestha et al., 2020). Problems with using the cloud 

include slow processing times and misuse of data privacy (Prabowo et al., 2023). 

Several studies have overcome this problem with edge computing, where data processing occurs on 

the device when the image is captured (Putrada, Abdurohman, et al., 2023a). Some novel edge architectures 

have been provided, for example, FedEdge (Ye et al., 2020), which targets edge computing to lighten the 

burden of mobile device computing and network communication. CREAT (Cui et al., 2022) is edge 

computing that adds up blockchain to the system to enhance the security and privacy while exercising a 

decentralized architecture. CREAT provides predictive caching to increase the hit rate of each edge node 

in the system. The novelty of LoPECS (Tang et al., 2020) lies in a heterogenous resource scanning system 

that optimizes edge device battery efficiency on autonomous vehicles. The cloudlet provided by LoPECS 

is developed using an Nvidia Jetson TX1. 

However, running a CNN on an edge device requires a pruning process because the resources on the 

edge device are not powerful enough to run complex algorithms, where pruning can reduce the number of 

weights in the CNN model (Joardar et al., 2023). CroApp (Jia et al., 2022) is a compression model for CNN, 

where pruning is one of the methods. The optimal CroApp model can provide a compression ratio (CR) of 

1.81x while increasing the accuracy of the CNN model in making predictions. Another study (Moon et al., 

2019) succeeded in applying pruning to CNN and obtained a compression ratio of up to 3.00x. ThiNet (Luo 

et al., 2018) is a CNN pruning method targeted for thin deep learning in mobile phones and embedded 

gadgets. ThiNet can compress the VGG-16 pre-trained model to only 2.66 MB of model size. Applying 

CNN pruning to plant disease detection is a research opportunity. 

The research aim of this study is to evaluate the performance of CNN pruning in edge computing-

based plant disease detection. We use the plant disease image dataset from Kaggle, where the data contains 

three diseases in corn. We also created an edge computing system architecture for plant disease detection 

utilizing the latest communication technology and middleware. Next, we developed an optimal CNN model 

for plant disease detection using grid search. In the final step, we pruned the CNN model and tested its 

performance. In this step, we developed a novel normalized-geometric mean (NG-Mean) method for 

accuracy loss optimization. 

To the best of our knowledge, there has never been any research that applies CNN pruning to edge 

computing-based plant disease detection. The following is a list of contributions to this research. First is an 

architecture for deep learning-based corn disease detection that applies edge computing and also pruning 

for model compression. Secondly, we propose a corn disease detection that uses class weights with 

optimum specificity and g-mean on the imbalanced dataset. Third is the grid search optimization method 

for corn leaf disease detection using CNN, which can find the optimal optimization method, learning rate, 

batch size, and epoch. Fourth is a novel method called NG-Mean for accuracy loss optimization in deep 

learning pruning. 

The systematics of this paper for the remaining sections are as follows: Section 2 shows the flow of 

our research and the theories involved in each stage. Section 3 presents the results of our research and also 

discusses them in relation to state-of-the-art research. Lastly, Section 4 provides the conclusions of our 

research and how we have achieved the research aim that we set out. 
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RESEARCH METHODS 

We implement a research workflow to accomplish our research goal. We use Kaggle's plant disease 

image dataset, which contains three corn diseases. We also created an edge computing system architecture 

for plant disease detection utilizing the latest communication technology and middleware. Next, we 

developed an optimal CNN model for plant disease detection using grid search. We pruned the CNN model 

in the final step and tested its performance. In this step, we developed a novel method called NG-Mean for 

accuracy loss optimization. 

 

Figure 1. Our Proposed Research Work Flow. 

1. Corn disease detection 

Plant disease detection in computer vision is one implementation that detects plant disease 

attacks by observing leaf images (Velmurugan et al., 2023). Several diseases can occur in corn plants, 

which can be detected on the leaves, namely blight, common rust, and gray leaf spot (Ashwini & 

Sellam, 2023). Fungi cause these diseases, and if a crop is affected by this disease, it can cause lesions, 

wilting, and decreased yield. If blight, common rust, or gray leaf spot is detected on a corn plant, to 

avoid the consequences, farmers must isolate it, improve the quality of life of the corn, and apply 

fungicide to the plant. These fungicides include azoxystrobin and triazoles (Degani et al., 2018). 

We obtained the corn leaf image dataset from Kaggle, where the dataset was uploaded by 

Smaranjit Ghose (Pamungkas et al., 2023). The dataset consists of 4188 corn leaf images. There are 

four classes: normal leaf, blight leaf, common rust leaf, and gray leaf spot leaf. The uploader combines 

two well-known datasets related to corn leaf, namely PlantVillage and PlantDoc. Some of the four 

related labels can be combined, which is done to study label correlation and overcome the problem of 

dataset imbalance (Siahroudi & Kudenko, 2023). Figure 1 shows four samples from each leaf 

condition. 

In addition to the Kaggle dataset uploaded by Smaranjit Ghose, the PlantVillage dataset, which 

contains images of various plant diseases across different species, and the AI Challenger dataset, 

which focuses on agricultural disease images from China, are several other datasets available for plant 

disease detection. We chose the Kaggle dataset by Smaranjit Ghose specifically because it is well-

curated, widely recognized, and focused exclusively on corn, aligning perfectly with the scope of our 

research. This dataset provides high-quality images of corn leaves with three distinct diseases, 

ensuring a targeted and comprehensive study. Furthermore, the dataset's structure and annotations are 

suitable for training and evaluating convolutional neural network (CNN) models, making it an ideal 

choice for our edge computing-based approach. 
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Figure 1. Leaf Dataset Samples. 

The dataset goes through several deep learning pre-processing techniques before entering the 

prediction stage. Image resizing is a useful step to adjust the image size to the input size of the deep 

learning model. Normalization changes the values in the image to have a standard range (Vocaturo et 

al., 2018). The label encoder functions to change the text label in the categorical label into a numerical 

label. One hot encoder function to transform numerical labels into binary vectors, ensuring that the 

output in the SoftMax activation function output has a sum of 1 (Pandey & Dukkipati, 2017). 

2. CNN model training 

Deep learning is an advancement of the science of machine learning where the learning model 

can carry out layered learning, where the first layer of learning is feature learning (Putrada, Alamsyah, 

et al., 2023). CNN is a type of deep learning where feature learning is carried out by applying 

convolutional kernels. These kernels perform convolution operations on images with a certain matrix 

size to extract features that are useful for predictions in the next layer (Pane et al., 2022). 

Deep learning with one CNN layer is sometimes referred to as shallow CNN, where several 

studies highlight the advantages of the shallow CNN architecture. A paper (Lei et al., 2020) states that 

the benefits of shallow learning are shorter training time, better accuracy, and low space and time 

complexity. The CNN architecture that we propose for corn disease detection is also a shallow CNN. 

Figure 2 shows the shallow CNN architecture that we suggest. The corn leaf image that is input is the 

result of the resize to 28×28. This corn leaf image has an RGB color model, so its dimensions are 

28×28×3. The CNN architecture comprises of six layers, often referred to as the LeNet-5 architecture. 
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The input shape adapts to the image size which is 28×28×3. The second layer is the convolution layer 

which uses a kernel with the size of 3×3. The third layer is the max pooling layer with a window that 

has a size of 2×2. There are 36 units each in the second and third layer. The fourth layer is the flatten 

layer, where the fifth layer is the dense layer which consists of 256 layers. The activation function of 

the fifth layer is the rectified linear unit (ReLU). Lastly, the sixth layer is the output layer with SoftMax 

activation function and uses two units which adapt to the number of classes in the dataset. 

 

Figure 2. Our Proposed Shallow CNN for Corn Disease Detection. 

Furthermore, on the convolutional layer, we apply 36 2D-CNN filters with a size of 3×3. The 

feature map (𝑆𝑚) that is generated based on the input size (𝑆𝑖) and the number of filters (𝑆𝑘) is based 

on the following formula: 

 

𝑆𝑚 =
𝑆𝑖−𝑆𝑘

𝑆𝑡𝑟𝑖𝑑𝑒
+ 1   (1) 

 

where Stride is the distance of the filter movement each time period. Based on this formula, the size 

of the output feature map from the convolutional layer is 26×26×36. The max pooling layer is a layer 

that carries out the process of reducing map features by finding the maximum value of a sliding 

window (Escobar et al., 2022). The number of output feature maps from the max pooling layer does 

not change from the input. Meanwhile, the output size of the max pooling layer (𝑆𝑝) follows the 

following formula: 

 

𝑆𝑝 =
𝑆𝑚

𝑆𝑤
    (2) 

 

where 𝑆𝑤 is the size of the max pooling window, and our max pooling window is 2, so our output x 

number of output max pooling layers is 13×13×36. The last three layers in the architecture are the 

flatten layer, which converts neurons into one-dimensional; the fully connected layer and the output 

is SoftMax with size 2. 

Regarding the state of the dataset, we need to anticipate it with several optimization techniques 

in the CNN model. A dataset can experience imbalance, that is, if one label is much more numerous 

than other labels. If an imbalance occurs, then the optimization on the CNN that can be done is class 

weight assignment. Class weight assignment is a class weight calculation based on the occurrence 

frequency of each class and predicted probability (Fernando & Tsokos, 2022). Predicted probability 

is the likelihood that is assigned to each class during classification. The following is the formula for 

calculating the class weight of each class (𝑊𝑐): 
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𝑊𝑐 =
N

C×Nc
, 𝑐 ∈ 𝐶   (3) 

where N is the dataset size, C is the number of classes, and 𝑁c is the dataset size in class c. 

We use accuracy, sensitivity, specificity, and g-mean to compare the performance of models 

with class weights and without class weights. Accuracy is a metric that compares all data predicted 

correctly with all data. Sensitivity in binary classification is a metric that measures the model's ability 

to predict the label "1". Specificity, on the other hand, is a metric that measures the model's ability to 

predict the label “0”. Finally, g-mean is an aggregate of sensitivity and specificity metrics calculated 

by taking the square root of the product of these two values. 

Deep learning using CNN has so many hyperparameters, so hyperparameter tuning in CNN 

learning can be a challenge (Zhan, 2022). Grid search can overcome the complexity and trade-offs in 

deep learning, where grid search is an optimization method for hyperparameter tuning. The way grid 

search works is by carrying out a systematic search based on a grid of pre-defined hyperparameters, 

whereby carrying out this mechanism, the optimal hyperparameters can be found (Thanh, 2021). We 

include four hyperparameters in our grid search: learning rate (LR), epoch, batch size, and optimizer. 

We brought two values to compare for each hyperparameter, namely 0.01 and 0.001 for LR, 10 and 

50 for epoch, 6 and 24 for batch size, and Adam and stochastic gradient descent (SGD) for the 

optimizer. The formula for calculating the number of outputs produced by grid search (𝑅) based on 

the number of hyperparameters (𝐻) and the number of values for each hyperparameter (𝑣ℎ) is as 

follows: 

 

𝑅 = ∏ 𝑣ℎ
𝐻
ℎ = 1     (4) 

 

with this formula, the search grid that we have set has 𝑅 = 16. Table 1 summarizes an explanation of 

the hyperparameters optimized in grid search. 

Table 1. Hyperparameters to be Optimized in the Grid Search and their Compared Values. 

No. Hyperparameter Compared Values 

1 LR 0.01, 0.001 

2 Epoch  10, 50 

3 Batch size 6, 24 

4 Optimizer Adam, SGD 

 

3. Edge computing and pruning 

Edge computing is a concept that aims to improve cloud architecture by bringing the computing 

process closer to the end device so that processing time can be shortened for systems with real-time 

constraints (Putrada et al., 2024). Our system uses the corn disease detection process on a cellphone 

as an edge device connected to a cloud server (Shrestha et al., 2020). Instead of sending images of 

corn leaves to the cloud, the smartphone application processes them. In contrast, the classification 

results from corn disease detection are sent to the cloud for further analysis (Choudhary et al., 2022). 

HTTP is a middleware that can communicate between applications on edge devices and cloud 

services. Figure 3 shows our explanation in the form of an architectural drawing of edge computing 

for corn disease detection. 
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Figure 3. The Proposed Corn Disease Detection System Based on Edge Computing Architecture. 

The problem in applying deep learning to edge computing is limited resources to run deep 

learning. With these limitations, model compression becomes an important factor. Model compression 

is the process of shrinking an intelligence model to better adapt to the resources on which it runs 

(Putrada, Abdurohman, et al., 2023b). Pruning in deep learning is a method of model compression 

that reduces the weights in the neural network while maintaining the prediction performance of the 

deep learning model. In this way, the size of the deep learning model will also be reduced 

(Gangopadhyay et al., 2023). 

Moreover, magnitude-based pruning is a type of pruning criterion that removes small weights in 

deep learning models (Ahia et al., 2021). Sparsity in pruning explains what proportion of the weight 

will be pruned. Pruning should apply a scheduling mechanism because applying pruning during 

training with constant sparsity can cause overfitting or underfitting. Polynomial decay scheduling is 

implementing scheduling by increasing sparsity in a scheduled manner with an increase in the 

polynomial trend (Fan et al., 2002). The formula for polynomial decay scheduling is as follows: 

 

𝑆𝑒 = 𝑆0 × (1 −
𝐸

𝐸𝑝
)

D

, 𝑒 ∈ 𝐸   (5) 

 

where 𝑆𝑒 is the sparsity of the current epoch, 𝑆0 is the initial sparsity, 𝐸  is the number of epochs in 

deep learning training, 𝐸𝑝 is the number of epochs for pruning, and D is the polynomial degree, which 

is a hyperparameter in the equation. Two measures of model compression performance are accuracy 

loss and CR, where the formula of CR is the original model size divided by the model size after 

applying compression (Qin & Sun, 2023). The formula of accuracy loss is the percentage of the 

accuracy decline from the original model’s accuracy. 

Finding an optimum compression model based on decreasing accuracy and CR is challenging 

(Kurtic et al., 2022). Here, we propose a novel formula to find the optimum model from several 

choices with variations in sparsity, scheduling, accuracy, and CR called NG-Mean: 

 

𝑁𝐺 − 𝑀𝑒𝑎𝑛𝑠 = √(1 − 𝐴𝑠
′ ) × 𝑍𝑠

′  , 𝑠 ∈ 𝑆   (6) 
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𝑠𝑜 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑁𝐺 − 𝑀𝑒𝑎𝑛)   (7) 

 

where 𝑆 is the range of sparsity values, 𝐴′  is normalized accuracy, 𝑍′  is normalized size, and 𝑠𝑜 is 

the index of the optimum model. 

 

RESULTS AND DISCUSSION 

1. Results 

The corn leaf image dataset that we downloaded and processed has two labels: "Healthy" and 

"Not Healthy." After going through the label encoder, the labels become 1 and 0, respectively. The 

number of datasets with label 1 is 3,026, and label 0 is 1,162, where the ratio condition of 2.6:1 shows 

an imbalance in the dataset. In the first test, we observed the performance of class weight in dealing 

with this imbalance.  

Figure 4 compares the CNN model in predicting cord disease with and without class weights. 

We use boxplot comparison to ensure statistical requirements for the comparison, where 50 samples 

are collected by testing the model iteratively. Using class weights can increase the model’s mean 

accuracy from 0.94 to 0.96. This indicates that balancing the influence of different classes in the 

training process enhances the model's ability to correctly classify diseases in corn leaves. Then, the 

increase in mean specificity is from 0.80 to 0.87, which shows a significant increase in the capability 

to detect the minority label. Lastly, the increase in mean specificity has an impact on the increase in 

mean g-mean, which is from 0.89 to 0.93. This result shows that the capability of the class weights to 

increase the performance of the model to detect the minority label influences of the overal prediction 

capability of the disease detection model. 

All the increase of mean performances are significant, as they all satisfy the t-test for statistically 

significant difference between the means of two groups. The p-values of the t-test for accuracy, 

sensitivity, specificity, and g-mean are 0.00018, 0.00284, 0.00015, and 0.00019, respectively. Because 

all the values are below the α, which is 0.05, it indicates that all four t-test results accept the alternative 

hypothesis ℎ1, that is, there is a significant difference between the means of each couple of groups. 

The highest p-value belongs to sensitivity and the lowest belongs to specificity, which shows that the 

class weights impact most on the much important label, the minority label.  
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Figure 4. The Performance Comparison of the usage of Class Weights in Dealing with Dataset Imbalance. 

 

In the following tests, we optimize the model with grid search, using four hyperparameters with 

two values each. Our grid search yielded 16 results, of which Table 2 shows all of these results. First, 

we observe that Adam is a more optimal optimizer than SGD. However, an LR of 0.001 is more 

optimal for Adam than an LR of 0.01. On the other hand, in SGD, LR with a value of 0.01 is more 

optimal than LR with a value of 0.001. Further, a batch size of 24 is more optimal than a batch size of 

6. Finally, between the two epoch values, the optimum epoch value for corn disease detection is 50 

versus 10. The optimum hyperparameters for the CNN model are obtained based on these 

observations. is the Adam optimizer with LR = 0.001, batch size = 24, and epoch = 50. The accuracy 

of the CNN model with these hyperparameters is 0.974. 

 

Table 2. Accuracy Comparison of Grid Search for CNN Model Optimization Results. 

  Adam SGD 

Batch 

Size 
Epoch LR=0.001 LR=0.01 LR=0.001 LR=0.01 

24 
50 0.974 0.973 0.720 0.879 

10 0.918 0.858 0.720 0.722 

6 
50 0.864 0.750 0.732 0.820 

10 0.823 0.777 0.720 0.745 

 

In the final test, we applied pruning, where we compared two scheduling methods of pruning: 

constant vs polynomial decay scheduling. We varied the sparsity value from 0.3 to 0.9 with ten times 

iteration to collect the distribution of accuracies. The hypothesis is that the greater the sparsity, the 

greater the CR. Figure 5 compares the two scheduling methods with a boxplot graph, where three 

points can be observed. The first point is that both constant and polynomial decay scheduling 
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experience a decrease in mean accuracy as the sparsity value increases. The second point is that for 

sparsity 0.3 to 0.6, the resulting polynomial decay and constant model has no significant difference in 

mean accuracy. This has been tested using the t-test, where the p-values are all above the α, which is 

0.05. The third observation is that for sparsity 0.7 to 0.9, the mean performance of polynomial decay 

is worse than constant scheduling, where the decrease in polynomial decay performance has a larger 

slope than constant scheduling. However, according to t-test, the difference is only significant at 

sparsities 0.7 and 0.8, where there are no significance in difference at sparsity equals 0.9. 

 

Figure 5. Comparison of the Influence of Two Scheduling Mechanisms in CNN Pruning on 

Accuracy with Varying Sparsity. 

In the same test, we now observe the size of the compression model using the two scheduling 

methods. We also compared the model's size with the original model's size, which was 18.475 kB. 

There are no distribution of model size values for each ten iteration of tests because the model size in 

a deep learning training with constant input and hyperparameter is deterministic. Figure 6 shows a 

comparison of the bar charts. In contrast to accuracy, the size of the two scheduling models 

experiences a linear decrease in sparsity. Polynomial decay scheduling has a smaller model size at 

each sparsity than constant scheduling. The smallest size of this entire test results from polynomial 

decay scheduling with a sparsity of 0.9, namely 4.709 kB. 
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Figure 6. Comparison of the Influence of Two Scheduling Mechanisms in CNN Pruning on Model 

Size with Varying Sparsity. 

Several aspects must be selected in selecting the optimum pruning result model, including 

reducing the accuracy and effectiveness of CR. For example, the compressed model resulting from 

polynomial decay scheduling with sparsity 0.9 gives the largest CR but gives too large an accuracy 

loss. We use a novel method called NG-Mean to objectively determine the optimal model. Based on 

this method, the optimal model is the model that uses constant scheduling with a sparsity value of 0.8. 

In this model, the mean accuracy is 0.960, and the size is 6.814 kB, which means there is a decrease 

in mean accuracy of 1.05% and CR of 2.71×. 

2. Discussion 

Several studies have used the corn leaf image dataset from Kaggle, which Smaranjit Ghose 

uploaded. One paper (Pamungkas et al., 2023) compared EffecientNet-B0 and ResNet-50 pre-trained 

models on this dataset and found that the optimum pre-trained model was EffecientNet-B0. However, 

the paper does not address the overfitting problem they encountered during training, as shown in the 

paper's learning curve. Another paper (Widianto et al., 2023) added feature extraction before using 

the CNN model in their training on the same dataset. These additional methods involve hue saturation 

value (HSV) coding, grayscale, region of interest, and grey level co-occurrence matrix (GLCM). 

These two papers have not discussed the architecture of corn disease detection. 

Several papers have discussed architecture in corn disease detection. One paper (Shrestha et al., 

2020) created an architecture for plant diseases, but it still uses a cloud architecture that is prone to 

delays in real-time systems. Another paper (Gajjar et al., 2022) discussed plant leaf disease detection 

using CNN and SSD MobileNet, where the model is drilled on a personal computer (PC), but the 

model is embedded on an edge computing device, namely the Nvidia Jetson. However, the paper does 
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not apply model compression, which is vulnerable because the model complexity can be too high for 

such edge computing devices. Our research contribution is an architecture for deep learning-based 

corn disease detection that applies edge computing as well as pruning for model compression. 

Several papers have used class weights in imbalanced datasets in image classification. One paper 

(Fernando & Tsokos, 2022) uses class weights to detect cyber-attacks where the imbalance condition 

is severe. The test results show that applying class weights provides a superior f1-score for detecting 

seven attacks. Another paper (Liu et al., 2023) embedded class weights in their new federated learning 

method for semi-supervised deep learning on medical images. The application of class weights in their 

method makes the performance of their method superior to five state-of-the-art methods. Our research 

uses class weights for the imbalance dataset in the corn leaf disease image dataset. The application of 

class weights makes the specificity and g-mean of the model better than without using class weights. 

No previous research utilized class weights that address the imbalance problem in corn leaf datasets. 

Our research contribution is a corn disease detection that uses class weights with optimum specificity 

and g-mean. 

Several papers have applied grid search for hyperparameter optimization in deep learning 

models. A paper (Thanh, 2021) uses grid search to optimize a 1D-CNN model in a load forecasting 

case study. There were seven hyperparameters tuned in their research, where some hyperparameters 

had two values that were compared with 384 possible outputs. Another paper (Sharma & Vardhan, 

2023) used grid search in a hybrid model between pre-trained VGG-Net and CNN which uses PCA 

to summarize the spectral features of diseased leaves. Through grid search, we found that the optimal 

CNN model for corn leaf disease detection uses hyperparameters, namely Adam optimization with 

LR of 0.001, batch size of 24, and epoch of 50. Our research contribution is the grid search 

optimization method for corn leaf disease detection using CNN. 

Previous research (Nagarajan et al., 2019) have stated that the size of a deep learning model is 

deterministic when the input and hyperparameters are constant, which explains why the model size in 

this research remains constant for ten iterations. Then, several papers used various methods to find 

the optimal compressed model between decreasing accuracy and CR. A paper (Dong et al., 2023) uses 

a genetic algorithm (GA) to obtain an optimal model. The results of this research show that the GA 

method can minimize the decrease in accuracy due to pruning. Another paper (Jiang et al., 2023) 

which also uses pruning, uses knowledge distillation to move knowledge from an unpruned model to 

a pruned model. This method can increase CR while minimizing the decrease in accuracy. In this 

paper, we use NG-Mean, a novel method for minimizing accuracy loss, where with this method, we 

found that the optimal compressed model uses constant decay with a sparsity of 0.9 where the accuracy 

loss is 1.94% and the CR is 2.74×. Our research contribution is a novel method called NG-Mean for 

accuracy loss optimization in deep learning pruning. Table 3 summarizes our discussion while 

highlighting the contributions that have been made from this research. 
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Table 3. State-of-the-Art Research Comparison on CNN Pruning and Our Research Contribution. 

Paper 

Reference 

Plant 

Disease 

Detection 

Smaranjit 

Ghose 

Dataset 

System 

Architecture 

Edge 

Computing 

Class 

Weights 

Grid 

Search 

Accuracy 

Loss 

Optimization 
(Pamungkas et al., 

2023) 
✓ ✓ ✘ ✘ ✘ ✘ ✘ 

(Widianto et al., 

2023) 
✓ ✓ ✘ ✘ ✘ ✘ ✘ 

(Shrestha et al., 
2020) 

✓ ✘ ✓ ✘ ✘ ✘ ✘ 

(Gajjar et al., 

2022) 
✓ ✘ ✓ ✓ ✘ ✘ ✘ 

(Fernando & 

Tsokos, 2022) 
✘ ✘ ✘ ✘ ✓ ✘ ✘ 

(Liu et al., 2023) ✘ ✘ ✘ ✘ ✓ ✘ ✘ 

(Thanh, 2021) ✘ ✘ ✘ ✘ ✘ ✓ ✘ 

(Sharma & 
Vardhan, 2023) 

✓ ✘ ✘ ✘ ✘ ✓ ✘ 

(Dong et al., 

2023) 
✘ ✘ ✘ ✘ ✘ ✘ ✓ 

(Jiang et al., 2023) ✘ ✘ ✘ ✘ ✘ ✘ ✓ 

Proposed Method ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

While our study demonstrates promising results in using pruned CNN models for corn leaf 

disease detection using an edge computing approach, several limitations must be acknowledged. 

Firstly, the dataset from Kaggle is limited to images of specific diseases in corn, which may not 

capture full real-world conditions. This constraint could introduce biases. Additionally, the 

generalizability of our findings may be restricted due to the specific characteristics of the dataset and 

the controlled environment in which the data was collected. Future research should incorporate more 

diverse and larger datasets, possibly collected in varying environmental conditions and from different 

regions, to enhance the robustness and applicability of the models. Furthermore, investigating the 

application of our novel NG-Mean method and pruned CNN approach to other crops and diseases 

could provide valuable insights and broaden the impact of our work. Practical applications could also 

explore real-time deployment scenarios, assessing the system's performance in field conditions and 

its integration with existing agricultural technologies to provide comprehensive support to farmers. 

 

CONCLUSIONS AND RECOMMENDATIONS 

In this research, we developed an architecture for corn disease detection that uses edge computing. 

This architecture uses a smartphone to capture images of corn leaves. We use a CNN architecture with a 

pruning method for edge-based disease detection. Several methods, such as class weights, grid search, and 

a novel method called NG-Mean, are used to optimize the deep learning model. The test results show that 

class weights can optimize specificity and g-mean on the imbalanced dataset, with values of 0.995 and 

0.983, respectively. Then, the grid search results can optimize the optimization method hyperparameters, 

learning rate, batch size, and epoch to get the best accuracy of 0.947. The results of applying pruning 

produce several models with variations in sparsity and scheduling method. As a result of the novel NG-

mean method, we succeeded in finding the optimum compressed model with constant scheduling and 

sparsity of 0.8 with a mean accuracy loss of 1.05% and a CR of 2.71×. 

For future recommendations, we suggest implementing the edge computing architecture that we 

proposed. We also propose implementing the pruned CNN model in this research to run on smartphones 

using applications such as TensorFlow Light (TF Light). Finally, we propose the use of other model 
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compression methods for deep learning, such as quantization, knowledge distillation, and low-rank 

factorization, to obtain more optimal accuracy loss. 
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