Klasifikasi Kanker Kulit Berdasarkan Fitur Tekstur, Fitur Warna Citra Menggunakan SVM dan KNN

Muhammad Faruk, Nur Nafi’iyah

Abstract


Skin cancer is one type of cancer that is quite serious that can not be controlled completely, so that many still result in death, disability and high medical costs. The diagnosis process carried out by dermatologists generally uses the Biopi process which is expensive, painful and requires a long recovery time for the wound, due to taking body tissue that scratches a small piece of tissue or by using a syringe to get a sample. Therefore we need a tool or system that can speed up helping to find out the type of skin cancer suffered, so that it can find out its treatment early by using digital image processing techniques. The purpose of this study is to classify the types of skin cancer based on texture and color image features using the SVM and KNN algorithm. The benefits are expected to help the skin medicine team in diagnosing skin cancer early. The features used are grayscale imagery taken by the average value, standard deviation, skewness, entropy, variance, contrast, energy, correlation, and homogeneity. Furthermore, the value of these features is trained and classified. The classification results using the SVM algorithm have an accuracy value of 69.85%. And accuracy using the KNN algorithm, with a value of K = 2 67.27%, K = 3 67.88%, K = 4 70.15%, K = 5 70.61%, K = 6 69.55%. Thus the best K on KNN is 5, the accuracy is 70.61%. Where the data used are 2637 training dataset images, and 660 test data images. And classified as a class of malignant, benign skin cancer.

Keywords


Malignant skin cancer; Benign skin cancer; Color texture features; SVM; KNN

Full Text:

PDF (Indonesian)

References


Abdullah, A., & Pahrianto. (2017). Sistem Klasifikasi Kematangan Tomat Berdasarkan Warna Dan Bentuk. Jurnal Sistem Informasi.

Burbidge, R., & Buxton, B. (2001). An introduction to support vector machine for data mining. Technical Report [http://www.cs.ucl.ac.uk/staff/r.burbidge/pubs/yor12-svm-intro.html].

Damayana, I., Atmaja, R. D., & Fauzi, H. (2016). Deteksi Kanker Kulit Melanoma Berbasis Pengolahan Citra Menggunakan Wavelet Transform. e-Proceedings of Engineering. Page 4718- 4723

Evy, P. (2019). Analisa Citra Panas Menggunakan Metode Wavelet dan Statistika Dalam Struktur ANN (Artificial Neural Network) Pada Kanker Payudara.(Pada Tikus Model Kanker). malang: STIKI.

Farhan, M. R., Widodo, A. W., & Rahman, M. A. (2019). Ekstraksi Ciri Pada Klasifikasi Tipe Kulit Wajah Menggunakan Metode Haar Wavelet. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2903-2909.

Gustina, S., Fadlil, A., & Umar, R. (2016). Identifikasi Tanaman Kamboja menggunakan Ekstraksi Ciri Citra Daun dan Jaringan Syaraf Tiruan. Seminar Nasional Ilkom (pp. 128-132). UNSRI.

Indriyani, I., & Sudarma, M. (2020). Classification Of Facial Skin Type Using Discrete Wavelet Transform, Contrast, Local Binary Pattern And Support Vector Machine. Journal of Theoretical and Applied Information Technology.

Kadir, A. (2013). Teori dan Aplikasi Pengolahan Citra. Yogyakarta: Andi.

Khotimah, H., Nafi’iyah, N., & Masruroh. (2020). Klasifikasi Kematangan Buah Mangga Berdasarkan Citra HSV dengan KNN. Jurnal Elektronika Listrik dan Teknologi Informasi Terapan, 1-4. doi: https://doi.org/10.37338/e.v1i2.100.

Lestari, Z. D., Nafi'iyah, N., & Susilo, P. H. (2019). Sistem Klasifikasi Jenis Pisang Berdasarkan Ciri Warna HSV Menggunakan Metode K-NN. Seminar Nasional Teknologi Informasi dan Komunikasi. Madiun.

Madan V, Lear JT, Szeimies RM. Non-melanoma skin cancer. Lancet. 2010; 375(9715): 673-685. doi: https://10.1016/S0140-6736(09)61196-X.

Nurviarelda, R., & Adiwijaya, A. A. (2018). Klasifikasi Data Microarray Menggunakan Discrete Wavelet. e-Proceeding of Engineering, (pp. 1536-1540).

Nusantara, T. F., Atmaja, R. D., & Azizah. (2018). Klasifikasi Jenis Kulit Wajah Pria Berdasarkan Tekstur Menggunakan Metode Gray Level Co-occurrance Matrix (glcm) Dan Support Vector Machine (svm). eProceedings of Engineering.

Pamungkas, A. P., Nafi'iyah, N., & Nawafilah, N. Q. (2019). K-NN Klasifikasi Kematangan Buah Mangga Manalagi Menggunakan L*A*B dan Fitur

Statistik. Jurnal Ilmu Komputer dan Desain Komunikasi Visual, 4(1), 1-8.

Prasetyo, E. (2011). Pengolahan Citra Digital dan Aplikasinya Menggunakan Matlab. Yogyakarta: Andi.

Pratama, I. W., Nafi’iyah, N., & Masruroh. (2020). Algoritme Knn Untuk Klasifikasi Kematangan Buah Apel Berdasarkan Tekstur. Jurnal Teknologi Informasi dan Komunikasi, 45-48.

Putra, D. (2010). Pengolahan Citra Digital. Yogyakarta: Andi.

Sari, Y. A., Dewi, R. K., & Fatichah, C. (2014). Seleksi Fitur Menggunakan Ekstraksi Fitur Bentuk, Warna, Dan Tekstur Dalam Sistem Temu Kembali Citra Daun. Juti, 1-8. doi: http://dx.doi.org/10.12962/j24068535.v12i1.a39

Setiawan, K. N., & Putra, I. M. (2018). Klasifikasi Citra Mammogram Menggunakan Metode K-Means, GLCM, dan Support Vector Machine (SVM). Jurnal Ilmiah Merpati (Menara Penelitian Akademika Teknologi Informasi), 13-24. doi: https://doi.org/10.24843/JIM.2018.v06.i01.p02

Sutojo, Mulyanto, E., & Suhartono, V. (2011). Kecerdasan Buatan. Yogyakarta: Andi.

Tjarta, A. (1993). Kanker Kulit di Indonesia, Antisipasi peningkatan pada masa mendatang. Jakarta: Universitas Indonesia.

Wahaninggar, K. (2016). Klasifikasi Citra Kanker Kulit Melanoma Menggunakan Metode Support Vectore Machine (SVM). ITS Surabaya: Thesis Fakultas Matematika dan Science.

Widhyanti, D. (2020). Clustering Jenis Tumor Kulit Menggunakan Metode FCM (Fuzzy C-Means). Mathunesa: Jurnal Ilmiah Matematika, 65-68.




DOI: http://dx.doi.org/10.35671/telematika.v13i2.987

Refbacks

  • There are currently no refbacks.




Indexed by:

     http://click.accelo.com/wf/click?upn=KMJOFt8368XHDV6m09YF-2BTGnIfzAj8ov81j3S3dKrgX-2FSP8SBOSe2Y-2FRl3XtyVdizj-2FkXxL-2F-2FBp-2BQ3h3JmTUMA-3D-3D_m-2BrHp932aZXzO0XgkbwedgKvn5QWlonE5sMgaivZdq7OsTVSTY4hEqzD-2Bq18nXAyLJBneuiZlt38H2UV92XxYUTcMxEriSXBXl4R62YQbqlgPCj4HTJTRlEeMBija8NFLIgPs2I1UuCR2UCZXSiKb2ocM6V4QaW-2FslHJUiSZesKuX9OlsnCNztILLyuQC4ZZvCegHVeQWDMYSYLvWzv-2FxgZ4v9s-2B2Ehf-2FEsLNi2Ea97Xe1t2vA4kmxioKhj90qGfUs7WlNUb-2B3FL0DjX8F4BTUuUiemqtsGMdQg-2By7qV9RY-3D       

Telematika

ISSN 2442-4528 (online) | ISSN 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto Telp (0281) 623321 Fax (0281) 621662
Email: telematika@amikompurwokerto.ac.id

Creative Commons License
This work is licensed under a  Creative Commons Attribution 4.0 International License.