Pengembangan Business Intelligence Di Rumah Sakit (Studi Kasus: RSUD Prof. Dr. Margono Soekarjo Purwokerto)

M. Rifqi Atsani, Galih Tyas Anjari, Nurul Mega Saraswati

Abstract


Pemerintah memberikan tuntutan dan keharusan kepada Rumah Sakit untuk memaksimalkan sumber daya yang dimiliki supaya pelayanan lebih baik. Manajemen Rumah Sakit membutuhkan informasi yang tepat untuk dapat membuat keputusan dalam mengelola dan mengatur Rumah Sakit sesuai aturan pemerintah. Informasi yang dimiliki saat ini masih terbatas, tidak sesuai yang terjadi di lapangan, dan membutuhkan resource yang besar untuk mengumpulkan informasi karena diperoleh secara manual. Pemanfaatan teknologi informasi seperti Business Intelligence (BI) menjadi solusi karena Business Intelligence merupakan sistem yang dikembangkan untuk mengolah dan menganalisis data menjadi informasi yang bermanfaat dan memberikan dukungan untuk membantu pengambilan keputusan strategis di Rumah Sakit. Penelitian ini akan mengembangkan Business Intelligence dengan tahapan identifikasi masalah, pengumpulan data, analisis data dan pengembangan Business Intelligence, implementasi, dan evaluasi. Data yang digunakan berasal dari Sistem Informasi Rumah Sakit (SIMRS) untuk memaksimalkan evidence-based practice. Jenis pengambilan keputusan dalam penelitian ini dibatasi pada manajemen tempat tidur di rawat inap, kepatuhan dokter terhadap pelayanan atau clinical pathway, dan angka kematian di Rumah Sakit. Batasan-batasan tersebut berdasarkan hasil pengumpulan data yang terbatas pada jenis data di database dan Standar Pelayanan Mutu (SPM) Rumah Sakit yaitu Bed Occupancy Rate (BOR), Bed Turn Over (BTO), Turn Over Interval (TOI), Average Length Of Stay (ALOS), Net Death Rate (NDR), Gross Death Rate (GDR). Dashboard Business Intelligence memberikan informasi kepada manajemen jika SPM Rumah Sakit dibawah atau melebihi standar yang sudah ditetapkan oleh Kementerian Kesehatan. Nilai SPM yang dibawah atau melebihi standar mengindikasikan mutu pelayanan Rumah Sakit tidak baik sehingga manajemen harus melakukan tindakan untuk memperbaikinya. Tahapan pengembangan Business Intelligence setelah resource (sumber data, data warehouse, Power BI) tersedia adalah proses Extract, Transform, Load (ETL) dari sumber data, pengambilan data dari data warehouse menggunakan aplikasi Power BI, dan pembuatan visualisasi dashboard. Aplikasi Power BI digunakan untuk membuat dashboard Business Intelligence karena mudah digunakan dan memiliki fitur yang lebih lengkap dibandingkan aplikasi lainnya. Sistem BI harus diuji usabilitas untuk mengetahui kualitas dan kelayakan sistem sebelum digunakan secara penuh. Metode uji usabilitas atau usability testing yang digunakan adalah System Usability Scale (SUS) karena dapat digunakan pada responden yang sedikit. Kuesioner digunakan sebagai alat untuk mengetahui penilaian pengguna terhadap sistem sehingga dapat diketahui kualitas dan kelayakan sistem. Hasil akhir evaluasi sistem BI oleh manajemen Rumah Sakit mendapatkan nilai 73.18181818 dari total 11 pengguna. Nilai tersebut termasuk dalam kategori layak jika merujuk pada tabel penilaian SUS skor.

 

The government gives demands and necessities to hospitals to maximize their resources to better their services. Hospital Management requires the right information to be able to make decisions in organizing and managing hospitals according to government regulations. The information hospital-owned is still limited, not match with what occurs in reality, and requires large resources to gather information because it is obtained manually. The use of information technology such as Business Intelligence (BI) is a solution because Business Intelligence is a system developed to process and analyze data into useful information and provide support to help strategic decision making in hospitals. This research will develop Business Intelligence with the first step is problem identification, data collection, data analysis and development of Business Intelligence, implementation, and evaluation. The data used comes from the Hospital Information System (SIMRS) to maximize evidence-based practice. The type of decision making in this study is limited to the management of beds in hospitalization, doctor's compliance with the service or clinical pathway, and mortality in hospitals. These limits are based on the results of data collection which is limited to the type of data in the database and the Hospital Service Quality Standards (SPM), namely Bed Occupancy Rate (BOR), Bed Turn Over (BTO), Turn Over Interval (TOI), Average Length of Stay (ALOS), Net Death Rate (NDR), Gross Death Rate (GDR). The Business Intelligence Dashboard provides information to management if the Hospital SPM is below or exceeds the standards set by the Ministry of Health. The SPM value that is below or exceeds the standard indicates that the quality of hospital services is not good so management must take action to improve it. The stages of developing Business Intelligence after resources (data sources, data warehouses, Power BI) prepared are extracted, transformed, loaded (ETL) from data sources, retrieving data from the data warehouse using the Power BI application, and creating dashboard visualization. The Power BI application was used to create Business Intelligence dashboards because it is easy to use and has more complete features than other applications. BI systems must be tested for usability to determine the quality and feasibility of the system before full use. The usability testing method used is the System Usability Scale (SUS) because it could be used on fewer respondents. The questionnaire is a tool to determine the user's assessment of the system so that the quality and feasibility of the system could be known. The final results of the BI system evaluation by Hospital management scored 73.18181818 from a total of 11 users. This value is included in the appropriate category if referring to the SUS score table.


Keywords


Informas; Rumah Sakit; Business Intelligence; Power BI; System Usability Scale.

Full Text:

PDF (Indonesian)

References


Abusweilem, M. A., & Abualous, S. (2019). The impact of knowledge management process and business intelligence on organizational performance. Management Science Letters, 2143–2156. https://doi.org/10.5267/j.msl.2019.6.020

Azemi, N. A., Zaidi, H., & Hussin, N. (2018). Information Quality in Organization for Better Decision-Making. International Journal of Academic Research in Business and Social Sciences, 7(12), Pages 429-437. https://doi.org/10.6007/IJARBSS/v7-i12/3624

Cheng, C., Gilmore, T., Lougen, C., & Stovall, C. (2018). Statistical Analysis, Data Visualization, and Business Intelligence Tools for Electronic Resources in Academic Libraries. What’s Past Is Prologue: Charleston Conference Proceedings 2017. Dipresentasikan pada Charleston Conference. https://doi.org/10.5703/1288284316679

Eidizadeh, R., Salehzadeh, R., & Chitsaz Esfahani, A. (2017). Analysing the role of business intelligence, knowledge sharing and organisational innovation on gaining competitive advantage. Journal of Workplace Learning, 29(4), 250–267. https://doi.org/10.1108/JWL-07-2016-0070

Gaardboe, R., Nyvang, T., & Sandalgaard, N. (2017). Business Intelligence Success applied to Healthcare Information Systems. Procedia Computer Science, 121, 483–490. https://doi.org/10.1016/j.procs.2017.11.065

Gaardboe, R., & Svarre, T. (2017). Critical Factors For Business Intelligence Succes. In Proceedings of the 25th European Conference on Information Systems (ECIS), Guimarães, Portugal, June 5-10, 2017 (pp. -). ISBN 978-989-20-7655-3 Research Papers

Gowthami, K. dan M. R. Pavan Kumar. (2017). Study on Business Intelligence Tools for Enterprise Dashboard Development. International Research Journal of Engineering and Technology (IRJET), 04(04). 2987-2992

Khedr, A., Kholeif, S., & Saad, F. (2017). An Integrated Business Intelligence Framework for Healthcare Analytics. International Journal of Advanced Research in Computer Science and Software Engineering, 7(5), 263–270. https://doi.org/10.23956/ijarcsse/SV7I5/0163

Kruse, C. S., Stein, A., Thomas, H., & Kaur, H. (2018). The use of Electronic Health Records to Support Population Health: A Systematic Review of the Literature. Journal of Medical Systems, 42(11), 214. https://doi.org/10.1007/s10916-018-1075-6

Lee, C. H., & Yoon, H.-J. (2017). Medical big data: Promise and challenges. Kidney Research and Clinical Practice, 36(1), 3–11. https://doi.org/10.23876/j.krcp.2017.36.1.3

Llave, M. R. (2019). A Review of Business Intelligence and Analytics in Small and Medium-Sized Enterprises: International Journal of Business Intelligence Research, 10(1), 19–41. https://doi.org/10.4018/IJBIR.2019010102

Loewen, E. (2017). Business intelligence: Assimilation and outcome measures for the health sector. University of Victoria, School of Health Information Science

Izhariman, L., Darwiyanto, E., & Puspitasari, S. Y. (2017). Perancangan Executive Information System Rumah Sakit Untuk Evaluasi Kinerja Pelayanan Di Rsup Mohammad Hoesin Palembang. e-Proceeding of Engineering, 4(3), 4957.

Kiani Mavi, R., & Standing, C. (2018). Cause and effect analysis of business intelligence (BI) benefits with fuzzy DEMATEL. Knowledge Management Research & Practice, 16(2), 245–257.

https://doi.org/10.1080/14778238.2018.1451234

Silvana, M., Ricky, A., & Derisma. (2017). Pengembangan Model Business Intelligence Manajemen Rumah Sakit untuk Peningkatan Mutu Pelayanan. Jurnal Edukasi dan Penelitian Informatika Untan, 3(2). https://doi.org/10.26418/jp.v3i2.22833

Trieu, V.-H. T., Cockcroft, S., & Perdana, A. (2018). Decision-Making Performance in Big Data Era: The Role of Actual Business Intelligence Systems Use and Affecting External Constraints. Research-in-Progress Papers ECIS 2018 Proceedings, 12

Vayena, E., Dzenowagis, J., Brownstein, J. S., & Sheikh, A. (2018). Policy implications of big data in the health sector. Bulletin of the World Health Organization, 96(1), 66–68. https://doi.org/10.2471/BLT.17.197426

Vokshi, B. N. (2017). Role of Accounting Information in Decision- Making Process, the Importance for its Users. 2017 ENTRENOVA Conference Proceedings, 8.




DOI: http://dx.doi.org/10.35671/telematika.v12i2.839

Refbacks

  • There are currently no refbacks.




Indexed by:

     http://click.accelo.com/wf/click?upn=KMJOFt8368XHDV6m09YF-2BTGnIfzAj8ov81j3S3dKrgX-2FSP8SBOSe2Y-2FRl3XtyVdizj-2FkXxL-2F-2FBp-2BQ3h3JmTUMA-3D-3D_m-2BrHp932aZXzO0XgkbwedgKvn5QWlonE5sMgaivZdq7OsTVSTY4hEqzD-2Bq18nXAyLJBneuiZlt38H2UV92XxYUTcMxEriSXBXl4R62YQbqlgPCj4HTJTRlEeMBija8NFLIgPs2I1UuCR2UCZXSiKb2ocM6V4QaW-2FslHJUiSZesKuX9OlsnCNztILLyuQC4ZZvCegHVeQWDMYSYLvWzv-2FxgZ4v9s-2B2Ehf-2FEsLNi2Ea97Xe1t2vA4kmxioKhj90qGfUs7WlNUb-2B3FL0DjX8F4BTUuUiemqtsGMdQg-2By7qV9RY-3D      

Telematika

ISSN 2442-4528 (online) | ISSN 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto Telp (0281) 623321 Fax (0281) 621662
Email: telematika@amikompurwokerto.ac.id

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0