KLASIFIKASI PRIORITAS DISTRIK TERHADAP KETAHANAN PANGAN MENGGUNAKAN METODE JARINGAN SYARAF TIRUAN

Agusta Praba Ristadi Pinem, Nurtriana Hidayati, Kholidin Kholidin

Abstract


The issue of food security is closely linked to the self-sufficiency program proclaimed. Government has conducted food security and vulnerability mapping detailing up to the kelurahan and kecamatan. The food security atlas classifies districts based on food security priorities. The priority of food security becomes information to support the decision-making process. Classification process can also be done with one method of data mining i.e. Artificial Neural Network (ANN). ANN is one of the classification methods that enable the network to learn from training dataset. In this research ANN use to classify district priorities on food security so can be known which districts are experiencing food vulnerability before turning into food-insecure districts. The dataset used is the resistance and vulnerability of West Papua Province. Output classification of ANN compared with real data with result Spearman correlation value  0.9375 which shows that the ANN method can classify the priority of food security and food vulnerability by using 10 indicators.

Keywords


Jaringan Syaraf Tiruan; JST; Ketahanan Pangan; Klasifikasi

Full Text:

PDF (Indonesian)

References


BKP. (2011). Peta Ketahanan dan Kerentanan Pangan Jawa Tengah 2010. Badan Ketahanan Pangan Provinsi Jawa Tengah.

Darujati, C., & Gumelar, A. B. (2012). Pemanfaatan Teknik Supervised Untuk Klasifikasi Teks Bahasa Indonesia. Jurnal Bandung Text Mining, 16(1), 5–1.

Dębska, B., & Guzowska-Świder, B. (2011). Application of artificial neural network in food classification. Analytica Chimica Acta, 705(1–2), 283–291. https://doi.org/10.1016/j.aca.2011.06.033

DKKP. (2015). Peta Ketahanan dan Kerentanan Pangan (Food Security and Vulnerability Atlas/FSVA) untuk Provinsi Papua pada tahun 2015. Dewan Ketahanan Pangan Provinsi Papua.

Fitri, F., Setyawati, O., & Rahadi, D. (2014). Aplikasi Jaringan Syaraf Tiruan Untuk Penentuan Status Gizi Balita Dan Rekomendasi Menu Makanan Yang Dibutuhkan. Jurnal EECCIS, 7(2), 119–124.

Gholami, V., Chau, K. W., Fadaee, F., Torkaman, J., & Ghaffari, A. (2015). Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers. Journal of Hydrology, 529, 1060–1069. https://doi.org/10.1016/j.jhydrol.2015.09.028

Jabbar, M. A., Deekshatulu, B. L., & Chandra, P. (2013). Classification of heart disease using artificial neural network and feature subset selection. Global Journal of Computer Science and Technology Neural & Artificial Intelligence, 13(3).

Maharani, W. (2015). Klasifikasi Data Menggunakan JST Backpropagation Momentum dengan Adaptive Learning Rate. In Seminar Nasional Informatika (SEMNASIF) (Vol. 1).

Paradarami, T. K., Bastian, N. D., & Wightman, J. L. (2017). A hybrid recommender system using artificial neural networks. Expert Systems with Applications, 83, 300–313. https://doi.org/10.1016/j.eswa.2017.04.046

Ruiz, L. G. B., Rueda, R., Cuéllar, M. P., & Pegalajar, M. C. (2018). Energy consumption forecasting based on Elman neural networks with evolutive optimization. Expert Systems with Applications, 92, 380–389. https://doi.org/10.1016/j.eswa.2017.09.059

Sampurno, R. M., & Seminar, K. B. (2017). Application of Artificial Neural Network in the Early Warning System for Food Crisis Management. Jurnal Teknotan, 11(1). https://doi.org/10.24198/jt.vol11n1.8

Wang, J., Yue, H., & Zhou, Z. (2017). An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 79, 363–370. https://doi.org/10.1016/j.foodcont.2017.04.013




DOI: http://dx.doi.org/10.35671/telematika.v11i2.712

Refbacks

  • There are currently no refbacks.




Indexed by:

     http://click.accelo.com/wf/click?upn=KMJOFt8368XHDV6m09YF-2BTGnIfzAj8ov81j3S3dKrgX-2FSP8SBOSe2Y-2FRl3XtyVdizj-2FkXxL-2F-2FBp-2BQ3h3JmTUMA-3D-3D_m-2BrHp932aZXzO0XgkbwedgKvn5QWlonE5sMgaivZdq7OsTVSTY4hEqzD-2Bq18nXAyLJBneuiZlt38H2UV92XxYUTcMxEriSXBXl4R62YQbqlgPCj4HTJTRlEeMBija8NFLIgPs2I1UuCR2UCZXSiKb2ocM6V4QaW-2FslHJUiSZesKuX9OlsnCNztILLyuQC4ZZvCegHVeQWDMYSYLvWzv-2FxgZ4v9s-2B2Ehf-2FEsLNi2Ea97Xe1t2vA4kmxioKhj90qGfUs7WlNUb-2B3FL0DjX8F4BTUuUiemqtsGMdQg-2By7qV9RY-3D      

Telematika

ISSN 2442-4528 (online) | ISSN 1979-925X (print)
Published by : Universitas Amikom Purwokerto
Jl. Let. Jend. POL SUMARTO Watumas, Purwonegoro - Purwokerto Telp (0281) 623321 Fax (0281) 621662
Email: telematika@amikompurwokerto.ac.id

 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0